Fundamental Symmetries and Spin Physics beyond SM

Wide Range of probes and techniques

17 talks (6 theorists and 11 experimentalists)

- PV electron scattering (2 expt.),
- Exotic spin-dependent forces (1 expt., 1 theory)
- n electric dipole moments (3 expt., 1 theory)
- p, D EDM (2 expt., 1 theory)
- nuclear EDM (1 theory)
- charmed baryon EDM (1 theory/expt.)
- Atomic EDM (3 expt., 2 theory)
- Dark matter/axions (2 expt., 2 theory)

Parity violating electron scattering

Exotic Spin Dependent Forces

Xing Rong (USTC, China)

EDM searches have tremendous discovery potential

The neutron EDM itself ...

ETH

Neutron EDM projects

	RAL SUSSEX ILL (Grenoble, FR)	PSI (Villigen, CH)		TUM ILL (Grenoble, Munich)		LANCSE EDM (Los Alamos, US)	SNS EDM (Oakridge, US)	PNPI ILL (Grenoble, FR ⇒ Gatchina, RU)		TRIUMF (Vancouver, CA)	
temperature	RT	RT		RT	T 0.7 K RT 0.7 K RT			RT			
comag	Hg	Hg		none		Hg	³ He	none		Xe+Hg	
source	reactor, turbine	spall., sD ₂		reactor, cold beam, ⁴ He		D2	spall, internal ⁴ He	reactor, turbine, ⁴He		spall., ⁴He	
nr of cells	1	1	2	2	> 100	1	2	2	>2	1	2
[UCN/cc]	2	3	5	10	1000	~ 50	125	4	10 ⁴	700	
goal [e∙cm]	3·10 ⁻²⁶	1.10-26	1.10-27	2·10 ⁻²⁷	< 10 ⁻²⁷	few 10 ⁻²⁷	2.10-28	5·10 ⁻²⁶	<1.10-27		1.10-27
date	2006	2017	2019	2019	2021+	2019	2022	2015	2022	2017	2020
status	done	RAL exp. NEW LIMIT SOON ~1.10 ⁻²⁶	new	Setup at ILL started: ,PanEDM'		Sucessful source upgrade	Critical Component Demonstration			FIRST UCN OBSERVED from prototype source (2017)	
+ Crystal EDM (Nagoya) + Beam EDM (Bern)							Phase -II is projected to achieve 1.5x10 ⁻²⁹ e-cm				

Peter Fierlinger (TUM)

New Kid on the Block (TRIUMF UCN source) TUCAN Collaboration

Radium EDM

Matt Dietrich (ANL)

ARIADNE: probing QCD axion parameter space

EDM of Charmed Baryons using bent crystals @ LHCb

- How to *put* polarized Λ_c^+ inside the crystal
 - Fixed-target + bent crystal in LHCb beam pipe
 - \blacktriangleright Incident beam: 7 TeV protons extracted from LHC beam halo using bent crystals \approx 100m upstream of the target
 - Feasibility proven by UA9 collaboration Physics Letters B 758 (2016) 129
 - ▶ Initial transversal polarization $s_0 \approx 50\%$
- How to measure the spin precession
 - Angular distribution of the decay $\Lambda_c^+ \rightarrow p K^- \pi^+ dN/d\Omega \propto 1 + \alpha \mathbf{s} \cdot \mathbf{k}$

Phys. Lett. B 757 (2016) 426 CERN-SPSC-2016-030 Eur. Phys. J. C 77 (2017) 181 JHEP 1708 (2017) Eur. Phys. J. C 77 (2017) 828

- With few weeks of data taking ($\approx 10^{15}$ protons on target) the EDM sensitivity would reach $\sigma_{\delta} \approx 10^{-17} ecm$
- The Λ_c^+ magnetic moment can be measured, for the first time, with $\sigma_{g-2} \approx 4 \times 10^{-3}$

Joan Ruiz Vidal (Valencia)

What can theory (lattice) say about the nEDM?

Alexandrou 2016

Phenomenology

φ

350

400

 m_{π} (MeV)

ф

Guo 2015

Shintani 2005 HV

₫

Red : Old \tilde{F}_3

450

Blue: Corrected F₃.

500

н

ндн

₹

550

Contribution of quark EDM to neutron EDM

 $g_T^d = 0.784(28); \quad g_T^u = -0.204(11); \quad g_T^s = -0.0027(16)$

2015 results: $g_T^d = 0.774(66); \quad g_T^u = -0.233(28); \quad g_T^s = -0.008(9)$

Relation between charges g_T^q , couplings d_q^γ , and the neutron EDM d_n $d_n = d_u^\gamma g_T^u + d_d^\gamma g_T^d + d_s^\gamma g_T^s + \cdots$ Constraint on d_n in Split SUSY

QCD θ term:

 $F_2 = \cos(2\alpha)\tilde{F}_2 - \sin(2\alpha)\tilde{F}_3$ $F_3 = \sin(2\alpha)\tilde{F}_2 + \cos(2\alpha)\tilde{F}_3$

0.2

0.0

-0.2

-0.4

-0.6

-0.8

300

Rajan Gupta (LANL)

depth variable depth	$\int \frac{3}{2} dPDM$
u n, lattice $^{\sim}$	$5\overline{5}^{a}$ n, quark model

• QCD θ-term

10⁴

Actively being calculated and progress at $M_{\pi} > 330$ MeV; need better variance reduction to get precision at $M_{\pi} = 135$ MeV

• Quark EDM

Calculated: $g_T^d = 0.784(28)$; $g_T^u = -0.204(11)$; $g_T^s = -0.0027(16)$

• Quark Chromo EDM

Exploratory studies show signal in connected contribution; next step: disconnected diagrams & renormalization/mixing

- Weinberg Three-gluon Operator Exploratory studies just started
- Four-quark Operators Not yet explored

Should have better estimate of accuracy achievable in 1-2 years

Nodoka Yamanaka (IPN Orsay)

Hadronic CP violation: from QCD to hadron level

EDM of light nuclei and counting rule

EDM of light nuclei can be measured using storage rings

 \Rightarrow No Schiff's screening

 \Rightarrow Very high sensitivity to new physics expected

Isovector coupling obeys a counting rule

 $d_{A}^{(pol)} \sim d(^{2/3}H) + n \ge 0.005 \ G_{\pi}^{(1)} \ e \ fm$

EDM of cluster
with open shellα-N polarization
(times # α-N combinations)

 \Rightarrow Explained by the <u>cluster structure</u>

NY, T. Yamada, Y. Funaki, in preparation

Isoscalar and isotensor appears from single valence nucleon and ³H cluster (vanish for α-N polarization)

 $d_{11B} = 0.02 \ G^{(1)}_{\pi} \ e \ fm$

Spin in curved space-time and gravity Kolya Nikolaev (Landau ITP) induced false EDM effects

The Earth as a laboratory: storage rings rests on the terrestial surface.

No real need in full machinery of General Relativity: weak field approximation is OK: it suffices to know the free fall acceleration \vec{g} , the Earth rotation is a fairly trivial effect.

Two principal effects:

- The spin-orbit interaction in the Earth gravitational field (the de Sitter precession, aka the geodetic effect (1916))
- Focusing EM fields are imperative to impose the closed paricle orbit in a storage ring compensating for the particle weight: first derivation by Silenko & Teryaev (2005) for magnetic case
- The both effects have similar structure and both produce false EDM signal in frozen spin pure electric ring
- No explicit separation of the two in otherwise fundamental Orlov et al. (2012)

False EDM from gravity induced imperfection Kolya Nikolaev (Landau ITP)

• Absolute evil in an all electric EDM ring - false EDM signal

$$\vec{\Omega}_{gE} = \frac{1 - G(2\gamma^2 - 1)}{\gamma c^2} [\vec{v} \times \vec{g}]$$
Upon the frozen spin constraint $v^2 = \frac{1}{1+G}$

Obukhov et al. (2016))

$$\vec{\Omega}_{gE} = \frac{g\sqrt{G}}{c}\vec{e}_r$$

- First derived by Orlov et al. (2012) by brute force solution of GR equations without explicit separation of the spin-orbit and focusing effects.
- Similar derivation by Laszlo et al. arXiv: 1803.01395 [gr-qc], Wedn., A11, 17:55
- Orlov et al (2012): gravity under full control , false effects can be cancelled out with counterrotating beams

Standard Candle to study systematics

Yevgeny Stadnik (JGU Mainz)

Constraints on Interaction of Axion Dark Matter with Gluons

Our dark-dominated universe and its baryon asymmetry speaks to possible **hidden (or visible?!)** particles, interactions, symmetries and more that we may yet discover

Such new physics could arise at either

i) high energies with $\mathcal{O}(1)$ couplings to SM particles

Here low energy & collider studies are complementary – or –

- ii) low energies with very weak couplings to SM particles Largely unexplored! Low energy studies have unique discovery potential!

New High or Low Energy Physics? With new low energy degrees of freedom (dof) new dimension 4 operators appear....

Including SM dof act as "portals" to a hidden sector

 $\mathcal{L}_{\dim \leq 4} = \frac{\kappa}{2} V^{\mu\nu} F'_{\mu\nu} - H^{\dagger} H (AS + \lambda S^2) - Y_N L H N$ [Batell, Pospelov, and Ritz, 2009; Bjorken, Essig, Schuster, Toro, 2009]

- Vector Portal
- Higgs Portal

Neutrino Portal Hunting Hidden Forces....

Much focus on the dark photon A' & the vector portal... note impact on μ g-2 (only simple A' excluded) [Pospelov, 2009]

Susan Gardner (U Kentucky)

Susan Gardner (U Kentucky)

Mechanisms of $0v \ \beta\beta$ decay Why the energy scale of B-L violation matters

If it is generated by the Weinberg operator, then SM electroweak symmetry yields $m_{\nu} = \lambda v_{\text{weak}}^2 / \Lambda$. If $\lambda \sim 1$ and $\Lambda \gg v_{\text{weak}}$, then naturally $m_{\nu} \ll m_f!$ N.B. if $m_{\nu} \sim 0.2 \text{ eV}$, then $\Lambda \sim 1.6 \times 10^9 \text{ GeV}!$

Alternatively it could also be generated by higher dimension $|\Delta L| = 2$ operators, so that m_{ν} is small just because $d \gg 4$ and Λ need not be so large

[EFTs: Babu & Leung, 2001; de Gouvea & Jenkins, 2008 and many models]

Can we establish the scale of $\mathcal{B} - \mathcal{L}$ violation in another way?

N.B. searches for same sign dilepton final states at the LHC also constrain the higher dimension ("short range") operators. [Helo, Kovalenko, Hirsch, and Päs, 2013]

Here we consider B-L violation in the quark sector: via $n-\overline{n}$ transitions

Heavy-Baryon EDMs

Joan Ruiz Vidal (IFIC Valencia)

Feasibility of a dedicated experiment (S2) explored in EPJ C77 (2017) 828

Session 6/F: Fundamental Symmetries and Spin-Dependent BSM

Lots of current activity, many new upcoming results expected (see Spin2020) huge discovery potential

exciting times ahead

Thank you

to the organizers (especially Paolo & Andrea),

to all the speakers (+ apologies for butchering their talks) of session 6/F,

and - last but not least to all the participants

Dipangkar Dutta (MSU), Andreas Wirzba (FZ Jülich)

