

SPIN 2018 23RD INTERNATIONAL SPIN SYMPOSIUM September 10-14, 2018 at Ferrara, Italy

COMPASS polarized target in 2018 and 2021 on behalf of the COMPASS Collaboration

G. Reicherz

- Introduction
- COMPASS Setup in 2018
- COMASS Polarized Target
- Target materials
- Summary/Outlook

fixed target experiment at the CERN SPS

COMPASS

LHC

COMPASS II

approved by CERN Research Board in 2010

 Polarized Drell-Yan measurement TMD PDFs

 π -- beam with polarized proton target

• GPD measurement Transverse imaging

 μ + μ -beam with liquid hydrogen target

 Pion and Kaon polarizability Chiral perturbation theory

 π --, K- (μ -) beam with nucleus target

With a upgraded COMPASS spectrometer

2014	Test beam Drell-Yar	process with π beam and	d T polarized proton target
------	---------------------	-----------------------------	-----------------------------

- 2015 Drell-Yan process with π beam and T polarized proton target
- 2016 DVCS / SIDIS with μ beam and unpolarized proton target
- 2017 DVCS / SIDIS with μ beam and unpolarized proton target
- 2018 Drell-Yan process with π beam and T polarized proton target

Introduction

Structure of the nucleon

- 8 intrinsic transverse momentum dependent PDFs
- Asymmetries with different angular dependences on hadron and spin azimuthal angles, Φh and Φs

Drell-Yan and SIDIS

Drell-Yan Process

$H_{a}(P_{a})$ $\overline{u}(k_{a})$ $I^{-}(l)$ $I^{+}(l')$ $H_{b}(P_{b},S)$ PDF

- Quark-Antiquark annihilation with two leptons in the final state
- Small cross section
- Describe the cross section with convolution of two PDFs only

$(PDF)\otimes(PDF)$

Semi-Inclusive DIS process

- Describe the cross section with convolution between PDF and FF
- Higher cross section
- Uncertainty of FF

$(PDF)\otimes(FF)$

SIDIS – transversely polarized Deuteron Target Transversity/Sivers PDF extraction

A new measurement of SIDIS on transversely polarized deuteron is proposed TMD PDFs and Transversity $h_1(x)$ are flavor dependent Flavour separation -> data on both proton and deuteron transversely polarized targets Proton data set is factor 4 compared to deuteron (see error bars for transversity $h_1(x)$ in the plot below) It's logical to increase the deuteron data set (so far the only data sets available are COMPASS (⁶LiD) and CLAS (³He) target

A. Martin, F.B., V. Barone PRD91 (2015) 014034

COMPASS setup in 2018

Two stages spectrometer

• Large Angle Spectrometer (SM1)

Small Angle Spectrometer (SM2)

designed to

- use high energy beams
- have large angular acceptance
- cover a broad kinematical range

variety of tracking detectors to cope with different particle flux from $\theta = 0$ to $\theta \approx 200$ mrad with a 7 **MuonWall** good azimuthal acceptance SM2 E/HCAL E/HCAL ~ 50 m SM1 **MuonWall Polarized Target** calorimetry, µID **RICH RICH** detector π beam

COMPASS Polarized Target

First time hadron beam was used with the COMPASS PT system

- 2.5 T solenoid + 0.6 T dipole
- 50 mK dilution refrigerator
- 2 x 55 cm long target cells
- NH₃ as proton target (17% df)
- DNP by microwave of 70 GHz
- 10 NMR coils
- Frozen spin mode at 50mK

Target cells and NMR coils

Target cell

• 55 cm × Ø 4 cm

- made with $(C_2F_3CI)_n$ to reduce the effect on polarization measurement

- 2(3) outer coils and 3(2) inner coils for each cell
- Since high intensity hadron beam on PT is the first attempt in COMPASS, we installed inner coils which are more sensitive to the effect of the beam
- 2 cells were placed 20 cm apart
- in 2018 old SMC NH₃ material is added to fill up the cells

Picture of coil1 (inner)

Picture of coil2 (outer)

COMPASS

RUB

Microwave system

- M.W. generator extended interaction oscillator , 20 W
- Power supplies
 - Varian VPW2838 and **CPI VPW2827**
- Power control
- Frequency counters
 - Phase Matrix EIP-548-B
- Power meter
 - Millitech DET-12-RPFW0

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

Target material Ammonia

: 1 week

2 weeks

7 months

4 years

Time after radiation

2018 we will add a few grams from the old smc materials (1996) its still polarizable very high but slower build up and relaxation times

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

Target loading April 17th

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

POlarization in 2015

COMPASS

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

Deuteron Targets for SIDIS

A new measurement of SIDIS on transversely polarized deuteron is proposed (2021)

Possible materials are

- ⁶LiD
- **D-Butanol**
- ND₃

About 900ccm are needed

Nucleon Polarization

Polarization = Orientation of Spins in a magnetic field

e⁻, p- and d-polarization vs temperature

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

```
RUHR-UNIVERSITÄT BOCHUM
```


DNP: Solid State Effect(simple)

EPR spectra of dif. radicals in D-materials

Gerhard Reicherz | SPIN 2018 23RD International SPIN Symposium, September 09-14, 2018, University of Ferrara, Italy

Deuterated Target materials

Material	Radical	∆g/g [10 ⁻³]	FWHM [mT]	P _{D,max} (2T5) [%]
D-Butanol	EDBA	5.98 ± 0.03	12.30 ± 0.20	26
D-Butanol	TEMPO	3.61 ± 0.13	5.25 ± 0.15	34
D-Butanol	Porphyrexide	4.01 ± 0.15	5.20 ± 0.23	32
¹⁴ ND ₃	¹⁴ ND ₂	≈ 23	4.80 ± 0.20	44
¹⁵ ND ₃	¹⁵ ND ₂	≈ 23	3.95 ± 0.15	-
D-Butanol	Hydroxyalkyl	1.25 ± 0.04	3.10 ± 0.20	55
⁶ LiD	F-center	0.0	1.80 ± 0.01	57
D-Butanol	Finland D36	0.50 ± 0.01	1.28 ± 0.03	79
D-Propandiol	Finland H36	0.47 ± 0.01	0.97 ± 0.04	-
D-Propandiol	OX063	0.28 ± 0.01	0.86 ± 0.03	81

J. Heckmann, et al., Phys. Rev. B 74 (2006) 134418.

Result: The smaller the EPR line width, the higher the deuteron polarization value

Target material D-Butanol

Paramagnetic center induced chemically

- Porphyrexid nitroxyl
- FINLAND trityl
- f = 20/84 = 0.238

D-Butanol doped with Porphyrexid and Tritayl radical

 $\begin{array}{c} \textbf{GDH 2003} \\ \overline{P} \approx 65 \% \\ \overline{P} \approx 29 \% \end{array}$

Target material D-Butanol

- Trityl radical density 2 to 2.5 weight%
- \emptyset 4cm · 55cm · 2 cells · 0.6 \cong 830ccm \Rightarrow 16 to 21g of radical trityl
- the magnetic field homogeniety must be about 3.10⁻⁵

The 900ml must be produced (Bochum, trityl radical exists) and it must be sure that the magnetic field homogeneity is about $3 \cdot 10^{-5}$

```
RUHR-UNIVERSITÄT BOCHUM
```


Target material ⁶LiD

Preparation by irradiation with electrons (E_e = 20 MeV, T=190K) f = 4/8 = 0.5 (⁶Li: α + D)

COMPASS 2006 P+ = +56% P- = -52%

Comparison in measurement time

Calculations are made for same target volume

Targetmaterial	Р	ρ [g/cm³]	f	F[10 ⁻² g/cm ³]	t/t _{HD}
Butanol	90%	0.94	0.14	1.39	0.46
NH3	90%	0.85	0.18	2.14	0.30
HD	<mark>63%</mark>	0.15	0.33	0.64	1.00

Proton materials

Deuteron materials

Targetmaterial	Р	ρ [g/cm³]	f	F[10 ⁻² g/cm ³]	t/t _{HD}
D-Butanol °	80%	1.07	0.24	3.88	0.42
ND3 °°	44%	1.02	0.30	1.78	0.91
6Lid	50%	0.82	0.50	5.13	0.31

```
RUHR-UNIVERSITÄT BOCHUM
```


- 2018 Target setup from 2015 is used
 - o coils #3 and #8 are mounted also inside the cells
 - $\,\circ\,$ to fill up the lack of 2011 irradiated $\rm NH_{3},$ material from SMC run 1996 is used
- 2021 SIDIS measurement Deuterated material will be used
 ⁶LiD is available last use 2006
 - D-Butanol doped with trityl must be produced (Bochum)

• Man power and target experts must be available!