COMPASS polarized target in 2018 and 2021 on behalf of the COMPASS Collaboration

G. Reicherz
Content

- Introduction
- COMPASS Setup in 2018
- COMASS Polarized Target
- Target materials
- Summary/Outlook
fixed target experiment at the CERN SPS
COMPASS II
approved by CERN Research Board in 2010

• Polarized Drell-Yan measurement
 TMD PDFs \(\pi^- \) beam with polarized proton target

• GPD measurement
 Transverse imaging \(\mu^+ \mu^- \) beam with liquid hydrogen target

• Pion and Kaon polarizability
 Chiral perturbation theory \(\pi^- , K^- (\mu^-) \) beam with nucleus target

With a upgraded COMPASS spectrometer

2014 Test beam Drell-Yan process with \(\pi \) beam and T polarized proton target
2015 Drell-Yan process with \(\pi \) beam and T polarized proton target
2016 DVCS / SIDIS with \(\mu \) beam and unpolarized proton target
2017 DVCS / SIDIS with \(\mu \) beam and unpolarized proton target
2018 Drell-Yan process with \(\pi \) beam and T polarized proton target
Introduction

Structure of the nucleon

- 8 intrinsic transverse momentum dependent PDFs
- Asymmetries with different angular dependences on hadron and spin azimuthal angles, Φ_h and Φ_s

<table>
<thead>
<tr>
<th></th>
<th>quark polarization</th>
<th>nucleon polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>U</td>
<td>f_1 number density</td>
<td>g_1 helicityΔq</td>
</tr>
<tr>
<td>L</td>
<td>h_{1L} - Boer Mulders</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>h_{1T} transversity $\Delta_T q$</td>
<td></td>
</tr>
</tbody>
</table>

SIDIS gives access to all of them
Drell-Yan and SIDIS

Drell-Yan Process

- Quark-Antiquark annihilation with two leptons in the final state
- Small cross section
- Describe the cross section with convolution of two PDFs only

\[(PDF) \otimes (PDF)\]

Semi-Inclusive DIS process

- Describe the cross section with convolution between PDF and FF
- Higher cross section
- Uncertainty of FF

\[(PDF) \otimes (FF)\]
A new measurement of SIDIS on transversely polarized deuteron is proposed

TMD PDFs and Transversity $h_1(x)$ are flavor dependent.

- Flavour separation -> data on both proton and deuteron transversely polarized targets
- Proton data set is factor 4 compared to deuteron (see error bars for transversity $h_1(x)$ in the plot below)
- It’s logical to increase the deuteron data set (so far the only data sets available are COMPASS (6LiD) and CLAS (3He) target.

A. Martin, F.B., V. Barone PRD91 (2015) 014034
COMPASS setup in 2018

designed to
• use high energy beams
• have large angular acceptance
• cover a broad kinematical range

variety of tracking detectors
to cope with different particle flux from $\theta = 0$ to $\theta \approx 200$ mrad with a good azimuthal acceptance

Two stages spectrometer
• Large Angle Spectrometer (SM1)
• Small Angle Spectrometer (SM2)
COMPASS Polarized Target

First time hadron beam was used with the COMPASS PT system

- 2.5 T solenoid + 0.6 T dipole
- 50 mK dilution refrigerator
- 2 x 55 cm long target cells
- NH$_3$ as proton target (17% df)
- DNP by microwave of 70 GHz
- 10 NMR coils
- Frozen spin mode at 50mK
Target cells and NMR coils

Target cell
- 55 cm × Ø 4 cm
- made with $(\text{C}_2\text{F}_3\text{Cl})_n$ to reduce the effect on polarization measurement
- 2(3) outer coils and 3(2) inner coils for each cell
- Since high intensity hadron beam on PT is the first attempt in COMPASS, we installed inner coils which are more sensitive to the effect of the beam
- 2 cells were placed 20 cm apart
- in 2018 old SMC NH$_3$ material is added to fill up the cells
Microwave system

Equipment

- M.W. generator extended interaction oscillator, 20 W
- Power supplies
 - Varian VPW2838 and CPI VPW2827
- Power control
- Frequency counters
 - Phase Matrix EIP-548-B
- Power meter
 - Millitech DET-12-RPFW0
Protons in a solid ammonia (NH₃) are used as a polarized target. Paramagnetic centers were created by irradiating with electron beam. The NH₃ has typically 10⁻⁴ - 10⁻³ free radicals/nucleus.

Time after radiation:
- 1 week
- 2 weeks
- 7 months
- 4 years

2018 we will add a few grams from the old smc materials (1996) its still polarizable very high but slower build up and relaxation times.
Target loading April 17th
Polarization in 2015

Maximum Polarization

- upstream: 82.7%, -86.0%
- downstream: 79.3%, -77.8%

Typical polarization during phys. data taking

- upstream: 74.2%, -71.4%
- downstream: 69.2%, -67.0%
Polarization in 2018

Maximum Polarization
- upstream: 78.1%, -82.8%
- downstream: 81.3%, -80.5%

preliminary
Deuteron Targets for SIDIS

A new measurement of SIDIS on transversely polarized deuteron is proposed (2021)

Possible materials are

• 6LiD
• D-Butanol
• ND$_3$

About 900ccm are needed
Nucleon Polarization

Polarization = Orientation of Spins in a magnetic field

e-, p- and d-polarization vs temperature

\[P = \frac{N^\uparrow - N^\downarrow}{N^\uparrow + N^\downarrow} \]

<table>
<thead>
<tr>
<th></th>
<th>T=1K</th>
<th>B=2.5 T</th>
<th>B=5T</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron</td>
<td>93.3 %</td>
<td>99.8 %</td>
<td></td>
</tr>
<tr>
<td>proton</td>
<td>0.255 %</td>
<td>0.512 %</td>
<td></td>
</tr>
<tr>
<td>deuteron</td>
<td>0.052 %</td>
<td>0.105 %</td>
<td></td>
</tr>
</tbody>
</table>
Idea: Transfer the high $P(e^-)$ to nucleon

$B = 2.5T$

H-Propanediol with Trityl-Radical

μ-wave frequency/MHz

$|P_{max}| < \frac{|P_{TE,e}|}{1 + f}$ mit $f = \frac{N_I t_{1e}}{N_e t_{1n}}$

$T_1^{e^-} = \text{ms to sec}$

$T_1^p = \text{min to hours}$

$B = 2.5T$ and $T=1K$
EPR spectra of dif. radicals in D-materials

TEMPO

irrad. 6LiD for comparison

trityl Width ≈ 0.22 mT

(C₄D₈)OD
Deuterated Target materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Radical</th>
<th>$\Delta g/g [10^{-3}]$</th>
<th>FWHM [mT]</th>
<th>$P_{D,max}(2T5)$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Butanol</td>
<td>EDBA</td>
<td>5.98 ± 0.03</td>
<td>12.30 ± 0.20</td>
<td>26</td>
</tr>
<tr>
<td>D-Butanol</td>
<td>TEMPO</td>
<td>3.61 ± 0.13</td>
<td>5.25 ± 0.15</td>
<td>34</td>
</tr>
<tr>
<td>D-Butanol</td>
<td>Porphyrexide</td>
<td>4.01 ± 0.15</td>
<td>5.20 ± 0.23</td>
<td>32</td>
</tr>
<tr>
<td>14ND$_3$</td>
<td>14ND$_2$</td>
<td>$\approx 2...3$</td>
<td>4.80 ± 0.20</td>
<td>44</td>
</tr>
<tr>
<td>15ND$_3$</td>
<td>15ND$_2$</td>
<td>$\approx 2...3$</td>
<td>3.95 ± 0.15</td>
<td>-</td>
</tr>
<tr>
<td>D-Butanol</td>
<td>Hydroxyalkyl</td>
<td>1.25 ± 0.04</td>
<td>3.10 ± 0.20</td>
<td>55</td>
</tr>
<tr>
<td>6LiD</td>
<td>F-center</td>
<td>0.0</td>
<td>1.80 ± 0.01</td>
<td>57</td>
</tr>
<tr>
<td>D-Butanol</td>
<td>Finland D36</td>
<td>0.50 ± 0.01</td>
<td>1.28 ± 0.03</td>
<td>79</td>
</tr>
<tr>
<td>D-Propanediol</td>
<td>Finland H36</td>
<td>0.47 ± 0.01</td>
<td>0.97 ± 0.04</td>
<td>-</td>
</tr>
<tr>
<td>D-Propanediol</td>
<td>OX063</td>
<td>0.28 ± 0.01</td>
<td>0.86 ± 0.03</td>
<td>81</td>
</tr>
</tbody>
</table>

Result: The smaller the EPR line width, the higher the deuteron polarization value.
Target material D-Butanol

Paramagnetic center induced chemically
- Porphyrexid nitroxyl
- FINLAND trityl
f = 20/84 = 0.238

D-Butanol doped with Porphyrexid and Tritayl radical

Deuteron Polarisation Fin II
Deuteron Polarisation Porphyrexid

GDH 2003
$\bar{P} \approx 65\%$
$\bar{P} \approx 29\%$
Target material D-Butanol

- Trityl radical density 2 to 2.5 weight%
- \varnothing 4cm \cdot 55cm \cdot 2 cells \cdot 0.6 \approx 830ccm \Rightarrow 16 to 21g of radical trityl

- the magnetic field homogeneity must be about $3 \cdot 10^{-5}$

The 900ml must be produced (Bochum, trityl radical exists) and it must be sure that the magnetic field homogeneity is about $3 \cdot 10^{-5}$
Target material ^6LiD

Preparation by irradiation with electrons
$(E_e = 20 \text{ MeV}, T=190K)$
$f = \frac{4}{8} = 0.5$ ($^6\text{Li}: \alpha + D$)

COMPASS 2006
$P^+ = +56\%$
$P^- = -52\%$
Comparison in measurement time

Calculations are made for same target volume

Proton materials

<table>
<thead>
<tr>
<th>Targetmaterial</th>
<th>P</th>
<th>ρ [g/cm3]</th>
<th>f</th>
<th>$F \times 10^{-2}$ g/cm3</th>
<th>t/t_{HD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butanol</td>
<td>90%</td>
<td>0.94</td>
<td>0.14</td>
<td>1.39</td>
<td>0.46</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>90%</td>
<td>0.85</td>
<td>0.18</td>
<td>2.14</td>
<td>0.30</td>
</tr>
<tr>
<td>HD</td>
<td>63%</td>
<td>0.15</td>
<td>0.33</td>
<td>0.64</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Deuteron materials

<table>
<thead>
<tr>
<th>Targetmaterial</th>
<th>P</th>
<th>ρ [g/cm3]</th>
<th>f</th>
<th>$F \times 10^{-2}$ g/cm3</th>
<th>t/t_{HD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Butanol \circ</td>
<td>80%</td>
<td>1.07</td>
<td>0.24</td>
<td>3.88</td>
<td>0.42</td>
</tr>
<tr>
<td>ND$_3$ $\circ\circ$</td>
<td>44%</td>
<td>1.02</td>
<td>0.30</td>
<td>1.78</td>
<td>0.91</td>
</tr>
<tr>
<td>6Lid</td>
<td>50%</td>
<td>0.82</td>
<td>0.50</td>
<td>5.13</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Summary / Outlook

• 2018 Target setup from 2015 is used
 o coils #3 and #8 are mounted also inside the cells
 o to fill up the lack of 2011 irradiated NH₃, material from SMC run 1996 is used

• 2021 SIDIS measurement Deuterated material will be used
 o ⁶LiD is available last use 2006
 o D-Butanol doped with trityl must be produced (Bochum)

 o Man power and target experts must be available!