E12-06-114: Deeply Virtual Compton Scattering at 11 GeV in Jefferson Lab Hall A

Ferrara Spin 2018

September 11

Frédéric Georges

Institut de Physique Nucléaire d'Orsay, France

for the Hall A DVCS collaboration

Outline

- Introduction physics motivations
- DVCS at Jlab, Hall A Goal
- Experimental setup
- Analysis overview
- Preliminary results
- Summary and Outlook

Generalized Parton Distributions (GPDs)

DIS Parton Distribution Functions

Elastic Form Factors

No information on the spatial location of the constituents

No information about the underlying dynamics of the system

- Elastic Scattering ($ep \rightarrow e'p'$) \rightarrow Elastic Form Factors ٠
- Inelastic Scattering (ep \rightarrow e'X) \rightarrow Parton Distribution Functions ٠
- DVCS (ep \rightarrow e'p' γ)

- → Generalized Parton Distributions → Spatial-Momentum correlations
- → Spatial distribution
- → Momentum distribution

& Spin structure

Deeply Virtual Compton Scattering (DVCS)

DVCS cross section \rightarrow GPDs \rightarrow Description of the proton internal structure.

GPDs and Compton Form Factors (CFFs)

The variable **x** is not experimentally accessible with DVCS. In the DVCS amplitude, GPDs are integrated over x or evaluated in $x = \xi$.

To study GPDs, one must extract **Compton Form Factors:**

$$Re\mathcal{H}_{q}(\xi,t) = P \int_{0}^{1} [H_{q}(x,\xi,t) - H_{q}(-x,\xi,t)] \frac{2x}{x^{2} - \xi^{2}} dx$$
$$Im\mathcal{H}_{q}(\xi,t) = H_{q}(\xi,\xi,t) - H_{q}(-\xi,\xi,t)$$

DVCS and Bethe-Heitler

At leading twist:

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im (T^{BH} \cdot T^{DVCS})$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e (T^{BH} \cdot T^{DVCS}) + |DVCS|^{2}$$

$$\downarrow$$

Known to 1% (J. J. Kelly. Simple parametrization of nucleon form factors. *Phys. Rev. C* 70, 068202, 2004.)

DVCS at Jefferson Lab, Hall A – Goal

• Data acquisition between Fall 2014 and Fall 2016.

kinematic	Q^2 (GeV ²)	X _B		• E12
kin36_1	3.2	0.36		•
kin36_2	3.6	0.36		•
kin36_3	4.5	0.36		
kin48_1	2.7	0.48		
kin48_2	4.4	0.48		
kin48_3	5.3	0.48		
kin48_4	6.9	0.48		
kin60_1	5.5	0.60		
kin60_2	6.1	0.60	←	— postpor
kin60_3	8.4	0.60		
kin60_4	9.0	0.60	-	— postpor

100 days of beam (88 + 12 calibration)

• E12-06-114 goals:

- Scaling test: Wide Q^2 scans at fixed x_B (larger Q^2 lever arm than previously & several values of x_B).
- Separation of Re and Im parts of DVCS cross-section amplitude.

DVCS at Jefferson Lab, Hall A – Apparatus

• Jlab: 12 GeV electron accelerator facility + 4 experimental Halls (A, B, C, D).

Event selection and exclusivity

- Vertex: cut the target aluminum walls.
- Calorimeter:
 - Only 1 photon detected.
 - Minimum photon energy: cut low energy background.
 - Energy leaks on the edges: cut photons in edges blocks.
- Spectrometer:
 - Electron identification: Cherenkov & Pion Rejector cuts to eliminate π^{-} .
 - Single track: cut events with multiple tracks.
 - Acceptance cut: the R-Function.

Spectrometer acceptance: the R-function

Spectrometer acceptance: 5-dimensional.

- Naïve approach: five 1-dimensional cuts.
- \rightarrow Inefficient (variables are correlated).
- Better approach: cut on the **distance of the electron to the** acceptance edges.
- \rightarrow Efficiency multiplied by 2.
- The R-function computes this distance: the R-value.
- \rightarrow If R-value > 0 the electron is inside of the acceptance.
- Cut on R-value: R-cut. **Data and Geant4 R-value** distributions must agree for R-value > R-cut.

Identical cuts will be applied to both data and simulation to compute the acceptance.

Background subtraction: accidental events

- DVCS event: photon & electron are detected in coincidence in [-3 ns , 3 ns].
- Photon & electron can come from different events and be in coincidence → accidental events.
- Subtraction of accidental events:
 - The probability for accidental events in [-3 ns , 3 ns] is the same as in [-3+n ns , 3+n ns].
 - Beam time structure: 4 ns.

 \rightarrow Subtract events detected in [-11 ns , -5 ns].

Background subtraction: π^0 contamination

- ep \rightarrow e'p' γ and ep \rightarrow e'p' π^0 can both occur.
- $\pi^0 \rightarrow \gamma \gamma$: if asymmetric decay, low energy photon can be missed.
 - ep \rightarrow e'p' $\gamma(\gamma)$ wrongfully identified as DVCS.

π^0 contamination subtraction method

- π^0 contamination subtraction method:
 - Identify π^0 in data:
 - 2 photons.
 - Avoid calorimeter edges (energy leaks).
 - Invariant mass $m_{\pi}^2 = 2E_{\gamma 1}E_{\gamma 2}(1 \cos\theta_{\gamma 1\gamma 2})$ compatible with π^0 .
 - For each π^0 : MC simulation $\pi^0 \rightarrow \gamma \gamma$
 - Subtract from DVCS data:
 - Normalized MC events with only 1 photon detected.

→Advantage: $ep \rightarrow e'p'\pi^0$ cross section taken into account by using π^0 data.

- Subtraction efficiency checked with Geant4
- → "Octagonal cut" (acceptance effect).

 π^0 subtraction efficiency depending on the position in the calorimeter.

Recoil proton identification: the missing mass cut

- **DVCS missing mass**: $ep \rightarrow e'X\gamma$
- $M_X^2 = (e + p e' \gamma)^2$

Exclusivity of the DVCS process is ensured by a cut on the missing mass.

• Remaining contamination: SIDIS ep \rightarrow e'p' γ X

SIDIS process with lowest missing mass: ep \rightarrow e'p' $\gamma \pi^0 (M_X^2 \approx 1.15 \text{ GeV}^2).$

- M_X² < 1.15 GeV² eliminates (most of) SIDIS contamination.
- Systematic uncertainty.

Corrections

- Trigger efficiency: measured > 99%
- Beam polarization: measured 86%
- Dead time: 2% 3% correction.
- Spectrometer multi-tracks: 4% 7% correction.
- Calorimeter multi-clusters (1 DVCS γ + X) : 0.5% 2% correction.
- •

Geant4 simulation and radiative corrections

- Acceptance computation → Geant4 simulation:
 - Target + beam line + calorimeter fully implemented.
 - Spectrometer: only entrance window, then R-function.
- **Real radiative corrections** (event generator):
 - Bremsstrahlung for incoming electron (straggling effect)
 - Internal Bremsstrahlung
 - (Final state particles: handled by Geant4)

Advantage: radiative tail taken into account in acceptance computation.

- Virtual radiative corrections (preliminary):
 - Expected to be similar to previous experiment E00-110.
 - 3% correction to polarized cross sections, 6% to unpolarized cross sections.

Simulation calibration and smearing

- Radiative tail + energy resolution \rightarrow DVCS events lost due to missing mass cuts.
- Compensation: same cuts applied to simulation \rightarrow need distributions to match.
 - Energy leaks + Cherenkov photon not simulated \rightarrow Calibration + Smearing.
- Geant4 reconstructed photons energy smeared by a Gaussian(μ,σ).
- (μ,σ) computed by χ^2 minimization:

 $\chi^{2} = \sum \frac{data_{Mx^{2}}-geant4_{Mx^{2}}}{\sigma^{2}(data_{Mx^{2}})}$

• (μ,σ) dependence with respect to the position in the calorimeter.

17

Cross sections extraction

- Four-fold cross section: Q², x_B , t and ϕ . (each kinematic setting: 1 Q² bin, 1 x_B bin, 5 t-t_{min} bins, 24 ϕ bins)
- One method:

•
$$\frac{d\sigma}{d\Omega} = \frac{N_{exp}}{L \Delta \Omega}$$
 with $\Delta \Omega = \frac{N_{simu}}{N_{gene}} \Delta \Omega_{simu}$
and L integrated luminosity.

- Then fit cross sections, CFFs...
- Another method, that we use:
 - Fit number of events with **CFFs parametrization** of cross section.
 - → Correct bin migration.
 - → Integrate kinematical dependences over the experimental acceptance.

The cross section fitting method

•
$$\chi^2 = \sum_{bins} \left(\frac{N_{exp} - N_{simu}}{\sigma_{exp}} \right)^2$$
 with $N_{simu} = L \int \frac{d\sigma}{d\Omega} d\Omega$

Parametrization $\sigma = \sum_{n} F_{n} X_{n}$ with \mathbf{F}_{n} kinematic prefactors and \mathbf{X}_{n} **CFF combinations** up to twist-3. Example: $\sigma = K_{0} CFF_{0} + K_{1} \cos(\phi) CFF_{1} + K_{2} \cos(2\phi) CFF_{2}$

(A.V. Belitsky and D. Müller. Compton scattering: from deeply virtual to quasi-real. Nucl. Phys. B878, 214-268, 2010. arXiv:1212.6674.)

• F_n integration & bin migration computed with the simulation.

• χ^2 minimization with respect to X_n \rightarrow Fit X_n (3 for unpolarized, 2 for polarized) \rightarrow Compute $\sigma_{fit} = \sum_n F_n X_n$ \rightarrow Compute $N_{simu} = L \int \frac{d\sigma_{fit}}{d\Omega} d\Omega$ \rightarrow Reconstruct $\frac{d\sigma_{exp}}{d\Omega} = \frac{N_{exp}}{N_{simu}} \frac{d\sigma_{fit}}{d\Omega}$

Φ (dearee)

Kinematic setting	χ_{unpol}^{2}/dof	χ^2_{pol}/dof
36_1	2.28	0.89
36_2	1.69	1.20
36_3	1.14	0.76
48_1	1.64	1.02
48_2	1.41	1.05
48_3	1.33	1.25
48_4	1.29	1.07
60_1	1.61	0.78
60_3	1.13	1.05

- Experimental number of events
- Fitted number of events

Preliminary systematic uncertainties

- Main systematic uncertainty: missing mass cuts.
 - Leftover **SIDIS contamination** below 1.15 GeV² (detector resolution).
 - Data and simulation missing mass distributions imperfect matching (smearing).
- \rightarrow Define cuts where matching is still good.

 \rightarrow Systematic uncertainty: cross section variations when the cut is changed.

 \rightarrow Point-to-point systematic uncertainty: ~ 2% - 5%.

- Unpolarized: DVCS term dominant at $\phi = 180^{\circ}$, interference increases at $\phi = 0^{\circ}$ and $\phi = 360^{\circ}$.
- Twist-2 dominant, Twist-3 compatible with 0.

 Φ (degree)

- Unpolarized: DVCS term dominant at $\phi = 180^{\circ}$, interference increases at $\phi = 0^{\circ}$ and $\phi = 360^{\circ}$.
- Twist-2 dominant, Twist-3 compatible with 0.
- Unpolarized: models overshoot data, better agreement with model KM10a than KM15.
- Polarized: good agreement of both models with data.
 - 30×10⁻³ d⁴σ (nb/GeV⁴) Experimental cross section Fitted cross section **Bethe Heitler** KM15 model 20 KM10a model $C^{DVCS}(F_{\downarrow},F_{\downarrow}^{*}|F_{\downarrow},F_{\downarrow})$, twist-2 15 Re C^I(F_), twist-2 Re C^I(F₂), twist-3 10 5 300 50 100 150 200 250 350

- KM10a & KM15: global fits to DVCS data. http://calculon.phy.hr/gpd/
- KM10a: does not use Hall A data.
- KM15: use Hall A and CLAS data up to 2015.
- K. Kumerički, S. Liuti, and H. Moutarde. GPD phenomenology and DVCS fitting. *Eur. Phys. J. A. 52, 157*, 2016. arXiv:1602.02763.

K. Kumerički and D. Müller. Description and interpretation of DVCS measurements. *EPJ Web of Conferences 112, 01012, 2015.* arXiv:1512.09014.

Summary and Outlook

- First DVCS experiment at 11 GeV in Jefferson Lab Hall A.
- Measured unpolarized & polarized cross sections (preliminary results):
 - 9 kinematic settings.

Total of 1080 new data points.

- 120 bins for each setting.CFFs extracted.
- Outlook:
 - Simulation smearing improvement (weighting with DVCS cross section).
 - Finalization of systematic uncertainties assessment.
 - Study of the Q² dependence of the CFFs (scaling test).

Thank You !

Questions ?

Backup

DVCS cumulated statistics

Could not go back and complete kin48_[234] because of beam energy change over the summer 2016.

kinematic	% of target charge	PAC days	
kin36_1	100.0	3	
kin36_2	100.0	2	
kin36_3	100.0	1	
kin48_1	100.0	5	
kin48_2	56.6	4	
kin48_3	76.4	4	
kin48_4	53.0	7	
kin60_1	100.0	13	
kin60_2	0.0	16	
kin60_3	100.0	13	
kin60_4	0.0	20	←

~50% of beam time allocation completed between 2014 and 2016.

DVCS Calorimeter DAQ

- Jlab : High Luminosity \rightarrow Challenge : **Pile-up**.
- Analog Ring Sampler boards : 1GHz Digitizer electronics, 128 ns samples.
- →Allows clear identification of DVCS photons and **pile-up resolution**.
- → Challenge: Large amount of data to deal with, **need "smart" trigger**.

DVCS Trigger System

- Level 1 Electron Trigger in Spectrometer:
 - Coincidence: Scintillator paddle + Gaz Cerenkov detector.
- If Level 1 trigger fired → Level 2 Coincidence with Calorimeter:
 - Calorimeter ARS boards freeze.
 - Look for event in Calorimeter.
 - Energy threshold.
- If level 2 fired → Event recorded (**ARS encoding slow → dead time**).
- If level 2 NOT fired → Event NOT recorded (**no ARS encoding → fast**).
- Then, clear ARS boards and resume acquisition.

Event selection and exclusivity

- Vertex: cut the target aluminum walls.
- Calorimeter:
 - Only 1 photon detected.
 - Minimum photon energy: cut low energy background.
 - Energy leaks on the edges: cut photons in edges blocks.
- Spectrometer:
 - Electron identification: Cherenkov & Pion Rejector cuts to eliminate π^{-} .
 - Single track: cut events with multiple tracks.
 - Acceptance cut: the R-Function.

Coincidence time correction

- Trigger jitter correction.
- Scintillator S2 paddles relative time correction (cabling).
- Photon travel time in S2 correction.
- Electron travel time in the spectrometer correction (dispersive angle and momentum).

Simulation calibration and smearing

- Radiative tail + energy resolution \rightarrow DVCS events lost due to missing mass cuts.
- Compensation: same cuts applied to simulation \rightarrow need distributions to match.
 - Energy leaks + Cherenkov photon not simulated \rightarrow Calibration + Smearing.
- Geant4 reconstructed photons energy smeared by a Gaussian(μ,σ).
- (μ,σ) computed by χ^2 minimization:

 $\chi^{2} = \sum \frac{data_{Mx^{2}}-geant4_{Mx^{2}}}{\sigma^{2}(data_{Mx^{2}})}$

• (μ,σ) dependence with respect to the position in the calorimeter.

34

Bin migration

• bin migration: (1) $N_r = \sum_{v} K_{rv} N'_{v}$

 N_r = number of events in a bin r, reconstructed: what we measure.

 N'_{v} = number of events in a bin v, at the vertex: what we want.

Ideally: $N_i = N'_i$ if same bins at vertex and reconstructed. But **bin migration** (resolution effects, radiative effects, etc...). $K_{ij} = \text{Probability event } \epsilon \text{ bin}_{i(\text{vertex})} \Rightarrow \text{event } \epsilon \text{ bin}_{i(\text{reconstructed})}$: what we need to compute with the simulation.

• Cross section: (2)
$$N'_{v} = L \int_{\Omega_{v}} \frac{d\sigma}{d\Omega} d\Omega$$

(2) in (1)
$$\rightarrow$$
 (3) $N_r = L \sum_{\nu} \int_{\Omega_{\nu}} K_{r\nu} \frac{d\sigma}{d\Omega} d\Omega$

Cross sections CFFs parametrization

• (3)
$$N_r = L \sum_{v} \int_{\Omega_v} K_{rv} \frac{d\sigma}{d\Omega} d\Omega$$

• Cross section parametrization with CFFs: (4) $\frac{d\sigma}{d\Omega} = \sum_{n} F_{n}X_{n}$ with X_n CFFs combinations and F_n kinematic prefactors (known).

(4) in (3)
$$\rightarrow$$
 (5) $N_r = L \sum_{\nu} \sum_n \int_{\Omega_{\nu}} K_{r\nu} F_n X_n d\Omega$

• Averaging
$$X_n$$
 over $\Omega_v: X_n \to X_{vn}$
(5) \to (6) $N_r = L \sum_v \sum_n X_{vn} \int_{\Omega_v} K_{rv} F_n dS$

Bin migration computation

• (6)
$$N_r = L \sum_{\nu} \sum_n X_{\nu n} \int_{\Omega_{\nu}} K_{r\nu} F_n d\Omega$$

• Notation:
$$K_{rvn} = \int_{\Omega_v} K_{rv} F_n d\Omega$$

(6) \rightarrow (7) $N_r = L \sum_v \sum_n K_{rvn} X_{vn}$

• Compute K_{rvn} with simulation: $K_{rvn} = \sum_{i \in \{v \to r\}} F_n \frac{\Delta \Omega_{i \ simu}}{N_{gene}}$

$$\chi^2$$
 minimization and CFFs fitting

• χ^2 minimization with respect to $X_{vn} \rightarrow$ fit CFF combinations X_{vn}

$$\chi^{2} = \sum_{r} \left(\frac{N_{exp\,r} \, N_{simu\,r}}{\sigma_{exp\,r}} \right)^{2} with \ N_{simu\,r} = L \sum_{v} \sum_{n} K_{rvn} X_{vn}$$

- From fitted CFFs X_{vn}:
 - Compute N_{simu r}

• Compute
$$\frac{d\sigma_{fitted v}}{d\Omega} = \sum_{n} F_{n} X_{vn}$$

• Reconstruct
$$\frac{d\sigma_{expr}}{d\Omega} = \frac{N_{expr}}{N_{simur}} \frac{d^4\sigma_{fittedr}}{d\Omega}$$