

$\begin{array}{l} \mbox{Transversity and } \Lambda \mbox{ polarization} \\ \mbox{at COMPASS} \end{array}$

Andrea Moretti

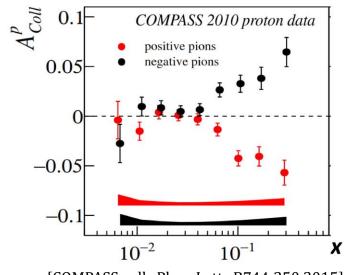
(University of Trieste / INFN) on behalf of the COMPASS Collaboration


Content of this talk

- The physics case
- Data analysis
- Results
- Interpretation
- Conclusions and perspectives

The physics case

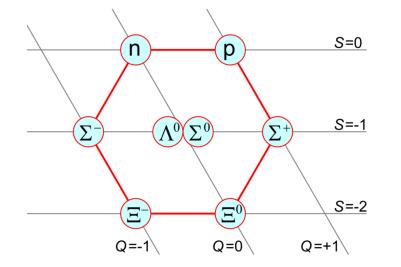
At leading order in collinear QCD, nucleon structure is described by three PDFs:



Transversity, introduced by Ralston and Soper in 1979 and rediscovered in early Nineties, accessible in SIDIS looking at:

- Collins and dihadron asymmetry results from HERMES and COMPASS
- Λ polarimetry

so far only preliminary results from COMPASS


[Baldracchini et al., 1981] [Artru and Mekhfi, 1990] [Jaffe and Ji, 1992]

[COMPASS coll., Phys. Lett., B744:250,2015]

Λ self-analyzing decay

Λ MAIN PROPERTIES

- Mass $M_{\Lambda} = 1115.7 \text{ MeV}/c$
- Spin-parity $J^P = \frac{1}{2}^+$
- Isospin I = 0
- Valence quark content *uds*
- $\Lambda \rightarrow p \pi^-$ (BR 63.9%)
- $\tau = (2.632 \pm 0.020) \ 10^{-10} \text{s}$

As reveal their polarization P_{Λ} through an angular asymmetry in the emission of decay protons (self-analyzing decay)

$$\frac{dN}{d\cos\theta} \propto 1 + \alpha P_{\Lambda}\cos\theta$$

 $\alpha = 0.642 \pm 0.013$ weak decay asymmetry parameter

 θ angle between Λ spin and proton momentum in Λ rest frame.

Transversity-induced polarization

In the **SIDIS** process $\ell p^{\uparrow} \rightarrow \ell' \Lambda X$,

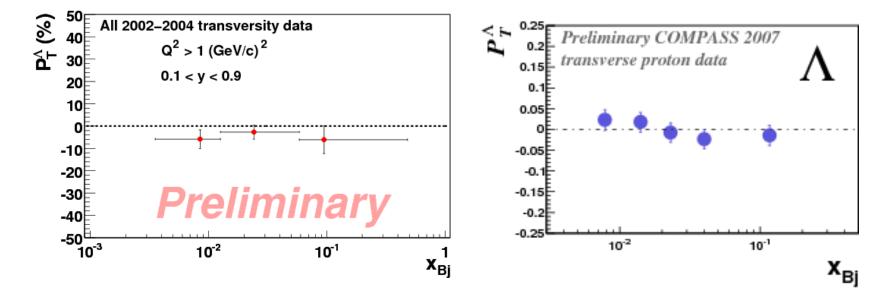
- with target **nucleon transversely polarized** and
- knowing that **transversity is different from zero**

the quark polarization can be transmitted to the Λ according to the expression

$$P_{\Lambda}^{raw}(x,z) = f P_T D_{NN} \frac{\sum e_q^2 h_1^{q(\bar{q})} H_1^{\Lambda,q(\bar{q})}(z)}{\sum e_q^2 f_1^{q(\bar{q})} D_1^{\Lambda,q(\bar{q})}(z)}$$

being *f* the dilution factor, P_T the target polarization and D_{NN} the depolarization factor.

Two remarks on this expressions. It holds true:

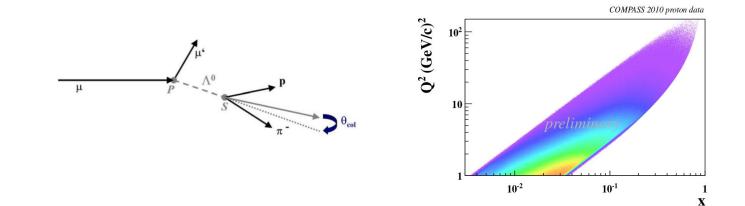

- assuming collinear kinematics ($\Lambda \parallel \gamma$, low p_t)
 - in the current fragmentation region

 \rightarrow our choice z > 0.2, x_F > 0

It's a statistically limited measurement, but still interesting,

So far, only preliminary results from COMPASS (on polarized deuteron and proton target – 2007 only)

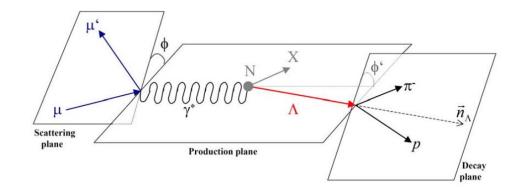
In this talk: results from the complete COMPASS transversely polarized proton data set.


Data analysis

A. Moretti, SPIN 2018

Λ selection procedure

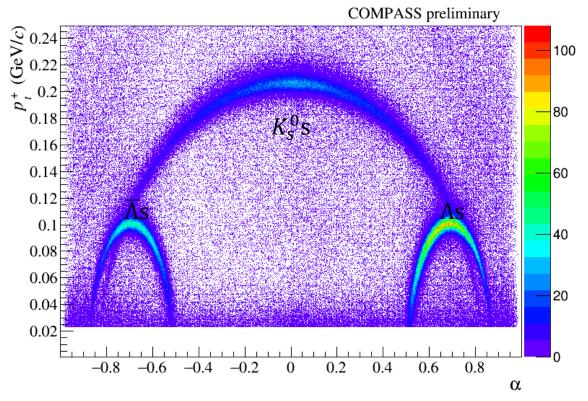
DIS events:


- $Q^2 > 1 \ (\text{GeV/c})^2$
- W > 5 (GeV/c²)
- 0.1 < y < 0.9
- *x* > 0.003

Final state candidates: two charged particles from the decay vertex (V^0 s) with

- opposite charge
- momenta > 1 GeV/c
- $p_T > 23 \text{ MeV/c}$
- to reject $e^+ e^-$ from γ conversion
- $\theta_{coll} = \arccos \frac{p_{\Lambda} \cdot PS}{|p_{\Lambda} \cdot PS|} < 7 \text{ mrad}$
- PID with RICH detector

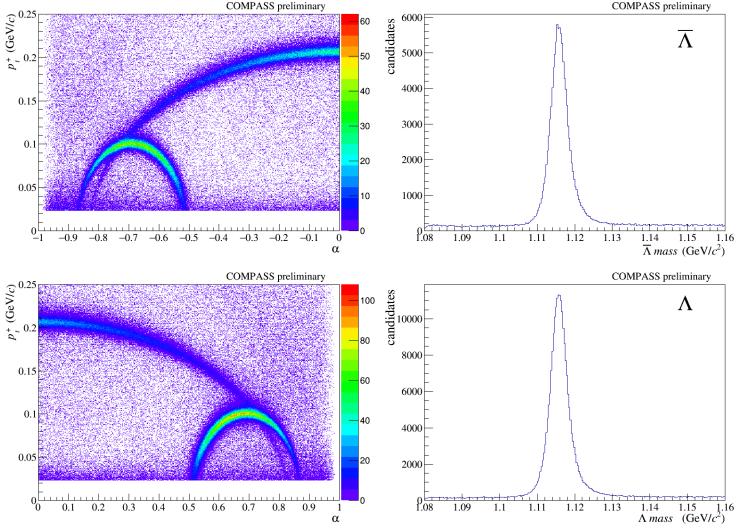
no direct identification of proton but veto on other particles


Armenteros plot

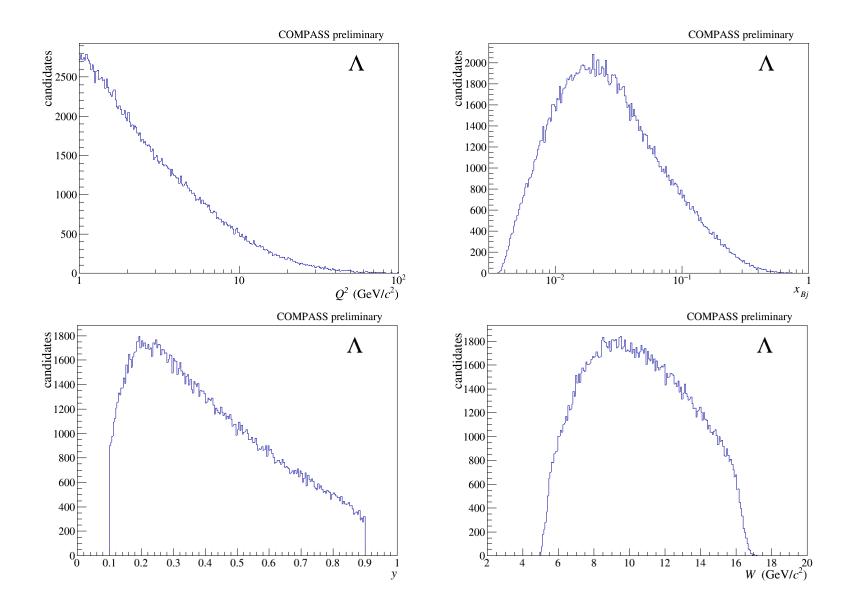
Longitudinal momentum asymmetry $\alpha = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$ VS transverse momentum p_T of one the decay particles in the V^0 rest frame.

As on the rightmost arc, $\overline{\Lambda}$ s on the leftmost.

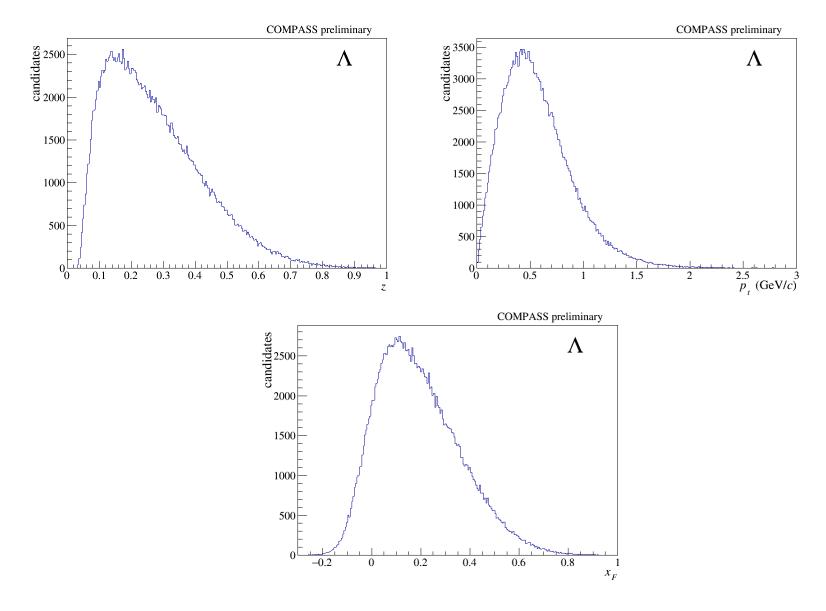
The leftover K_s^0 s appear on the large symmetric arc (anyway removed by the forthcoming mass cut).

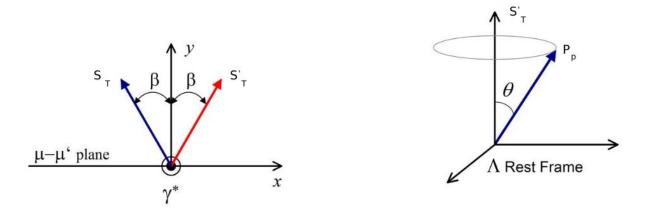


Final $\Lambda - \overline{\Lambda}$ candidates


In the mass peak ~ 305 000 As, 154000 $\overline{\Lambda}$ s.

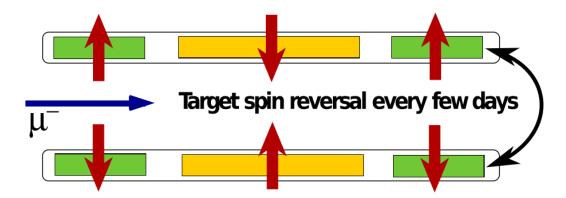
Very clean signal with low background (anyway taken into account)


Kinematic distributions: Q^2 , x, y, W (Λ s)



Kinematic distributions: z, p_t, x_F (As)

 P_{Λ} is to be measured in the Λ rest frame as an angular asymmetry in the distribution of the proton wrt the outgoing quark spin direction [Mulders – Tangerman, 1996]



- Initial quark spin S_T parallel to the target polarization vector (transverse in the lab)
- Final quark spin S'_T reflection of S_T wrt normal to the scattering plane
- Event by event procedure

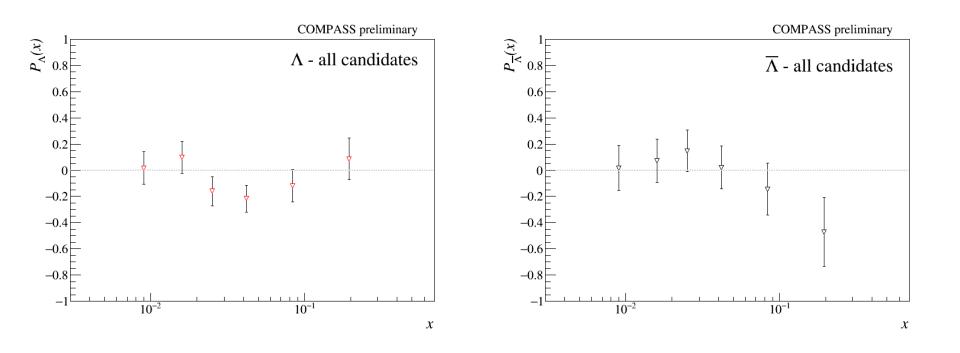
Polarization extracted using standard COMPASS methods that take advantage of:

- Polarized target geometry and
- Polarization reversal during data taking to get rid of the spectrometer acceptance
- Standard studies on systematic effects give $\sigma_{syst} < 0.8 \sigma_{stat}$.

Results

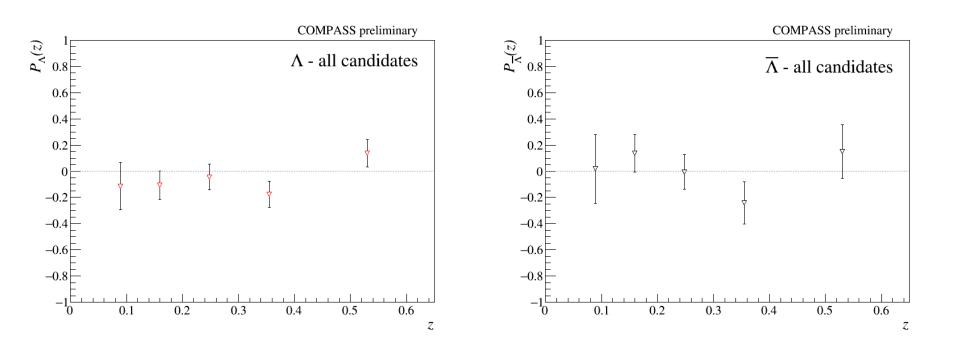
Results: all Λs and $\overline{\Lambda} s$

Polarization has been measured as a function of x, z and p_t for both Λs and $\overline{\Lambda}s$:

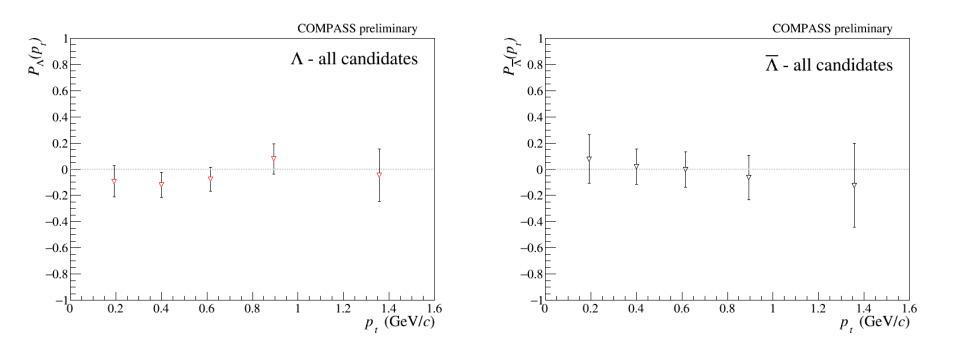

$$P_{\Lambda}^{raw}(x,z) = f P_T D_{NN} \frac{\sum e_q^2 h_1^{q(\bar{q})} H_1^{\Lambda,q(\bar{q})}(z)}{\sum e_q^2 f_1^{q(\bar{q})} D_1^{\Lambda,q(\bar{q})}(z)}$$

Note: Polarization plots are given here divided by f, P_T and D_{NN} (spin transfer).

$$P_{\Lambda}(x,z) = \frac{\sum e_q^2 h_1^{q(\bar{q})} H_1^{\Lambda,q(\bar{q})}(z)}{\sum e_q^2 f_1^{q(\bar{q})} D_1^{\Lambda,q(\bar{q})}(z)}$$



 $P_{\Lambda(\overline{\Lambda})}(x)$



 $P_{\Lambda(\overline{\Lambda})}(z)$

 $P_{\Lambda(\overline{\Lambda})}(p_t)$

Results

Polarization has also been measured in six other kinematic regions:

- High z : z > 0.2 and $x_F > 0$ ("current" fragmentation region)
- Low z : z < 0.2 or $x_F < 0$ ("target" fragmentation region)
- High x : x > 0.032 ($\mathbf{h}_1^{u,d}(x)$ different from zero)
- Low *x* : *x* < 0.032
- High $p_t : p_t > 1 \text{ GeV}/c$
- Low $p_t : p_t < 1 \text{ GeV}/c$

In general, as in the case of all Λ s and $\overline{\Lambda}$ s, polarizations are found compatible with zero.

Interpretation

A. Moretti, SPIN 2018

Interpretation for directly produced Λ : we neglect the spin transfer to Λ from heavier hyperons

$$P_{\Lambda}(x,z) = \frac{\sum e_q^2 h_1^{q(\bar{q})} H_1^{\Lambda,q(\bar{q})}(z)}{\sum e_q^2 f_1^{q(\bar{q})} D_1^{\Lambda,q(\bar{q})}(z)}$$

What can we learn from our results?

We **KNOW** that:

- $h_1^u(x)$ and $h_1^d(x)$ are different from zero at large *x*;
- $h_1^{\overline{u}}(x)$ and $h_1^{\overline{d}}(x)$ are compatible with zero.

We can **ASSUME** that:

- $h_1^{\bar{s}}(x) \sim 0;$
- negligible contribution from \bar{q} in unpolarizd fragmentation process;
- isospin symmetry at work: $D_1^{\Lambda,u}(z) = D_1^{\Lambda,d}(z)$ and $H_1^{\Lambda,u}(z) = H_1^{\Lambda,d}(z)$;
- $D_1^{\Lambda,s}(z) = c_1 D_1^{\Lambda,u}(z)$ with constant c_1 ;
- Analogously, if $H_1^{\Lambda,u}(z) \neq 0$, $H_1^{\Lambda,s}(z) = c_2 H_1^{\Lambda,u}(z)$.

The quantity $1/c_1$ is usually referred to as strangeness suppression factor. In [J-J. Yang, Phys Rev D65 2002] it is put at 0.44.

Three different hypotheses

With these ingredients we can write a simplified expression for P_{Λ} :

$$P_{\Lambda}(x,z) = \frac{\left[4h_{1}^{u}(x) + h_{1}^{d}(x)\right]H_{1}^{\Lambda,u}(z) + h_{1}^{s}(x)H_{1}^{\Lambda,s}(z)}{\left[4f_{1}^{u}(x) + f_{1}^{d}(x) + c_{1}f_{1}^{s}(x)\right]D_{1}^{\Lambda,u}(z)}$$

Now, we can interpret the data according to **three different hypotheses**:

- 1. Transversity is a valence object
- 2. Polarization is entirely due to the s quark (SU(6) approach)
- 3. Quark-diquark model [J-J. Yang, Nucl Phys A699:562-578, 2002]

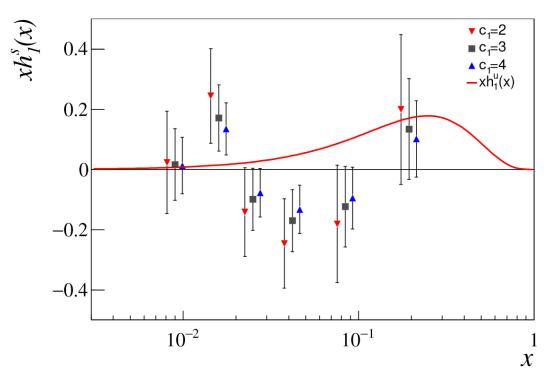
Note: simplified expression looks interesting with a deuteron target:

$$P_{\Lambda}(x,z) = \frac{5(h_1^u(x) + h_1^d(x))H_1^{\Lambda,u}(z) + 2h_1^s(x)H_1^{\Lambda,s}(z)}{5(f_1^u(x) + f_1^d(x))D_1^{\Lambda,u}(z) + 2f_1^s(x)D_1^{\Lambda,s}(z))} \approx \frac{2h_1^s(x)H_1^{\Lambda,s}(z)}{5(f_1^u(x) + f_1^d(x) + 2c_1f_1^s(x))D_1^{\Lambda,u}(z)}$$

If transversity is a valence object, then $h_1^s(x) \approx 0$ and

$$P_{\Lambda}(x) = \frac{\left[4h_{1}^{u}(x) + h_{1}^{d}(x)\right]}{\left[4f_{1}^{u}(x) + f_{1}^{d}(x) + c_{1}f_{1}^{s}(x)\right]} \frac{\int dz H_{1}^{\Lambda,u}(z)}{\int dz D_{1}^{\Lambda,u}(z)}$$
$$\rightarrow R(x) = \frac{\int dz H_{1}^{\Lambda,u}(z)}{\int dz D_{1}^{\Lambda,u}(z)} = \frac{\left[4f_{1}^{u}(x) + f_{1}^{d}(x) + c_{1}f_{1}^{s}(x)\right]}{\left[4h_{1}^{u}(x) + h_{1}^{d}(x)\right]} P_{\Lambda}(x)$$

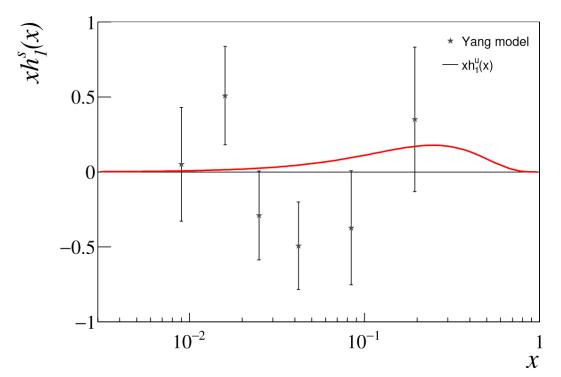
<i>c</i> ₁	< R >
2	-0.39 ± 0.73
3	-0.38 ± 0.75
4	-0.37 ± 0.76


First extraction of R(x), largely compatible with zero, weak dependence on c_1 .

Hypothesis 2: polarization due to *s* quark only

If P_{Λ} is due to *s* quark only, then $H_1^{\Lambda,u}(z) = H_1^{\Lambda,d}(z) = 0$. Assuming $H_1^{\Lambda,s}(z) = D_1^{\Lambda,s}(z)$,

$$P_{\Lambda}(x) = \frac{c_1 h_1^s(x) D_1^{\Lambda,u}(z)}{\left[4f_1^u(x) + f_1^d(x) + c_1 f_1^s(x)\right] D_1^{\Lambda,u}(z)}$$


$$\rightarrow h_1^s(x) = \left(\frac{4f_1^u(x) + f_1^d(x)}{c_1} + f_1^s(x)\right) P_{\Lambda}(x)$$

 P_{Λ} is written in terms of flavor (*F*) and spin structure functions (\widehat{W}). $h_1^s(x)$ can be accessed.

$$P_{\Lambda}(x,z) = \frac{\left(4h_{1}^{u}(x) + h_{1}^{d}(x)\right)\frac{1}{4}\left[\widehat{W}_{s}^{(u)}(z)F_{s}(z) - \widehat{W}_{V}^{(u)}(z)F_{M}(z)\right] + h_{1}^{s}(x)\,\widehat{W}_{s}^{(s)}(z)}{\left(4f_{1}^{u}(x) + f_{1}^{d}(x)\right)\frac{1}{4}\left[F_{s}(z) + 3F_{M}(z)\right] + f_{1}^{s}(x)}$$

Conclusions and perspectives

COMPASS

- Transversity-induced polarization of Λ hyperons in SIDIS measured using the whole COMPASS transversely polarized proton data set.
- Λ and $\overline{\Lambda}$ polarizations evaluated in their rest frame along the outgoing quark spin; measured in seven kinematic regions, generally compatible with zero.
- Three main hypothesis to interpret the results:
- 1. the first (transversity a valence object) gives the integrated ratio of the fragmentation functions $H_1^{\Lambda,u}(z)$ and $D_1^{\Lambda,u}(z)$, compatible with zero;
- 2. the second (only s quark counts) allows for an extraction of $xh_1^s(x)$ dependent on the parameter $c_1 = D_1^{\Lambda,s}(z)/D_1^{\Lambda,u}(z)$;
- 3. the third (quark-diquark model) again gives $xh_1^s(x)$ without assumptions on the fragmentation functions.

- Even if definite conclusions cannot be drawn, mainly due to the statistical uncertainty, this is a contribution to a longstanding issue
- Ratios of fragmentation functions are extracted here for the first time
- Much more could be studied with new deuteron data.

thank you!