## The Polarized Target at the CBELSA/TAPS Experiment SPIN 2018 Ferrara

Stefan Runkel

on behalf of the CBELSA/TAPS collaboration

Physikalisches Institut - Universität Bonn

11th September, 2018



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## CBELSA/TAPS





| $\gamma$      |    | Target |            |               |
|---------------|----|--------|------------|---------------|
|               |    | х      | у          | Z             |
| Unpolarised   | σ  | 0      | Т          | 0             |
| Linear pol.   | -Σ | н      | - <b>P</b> | $-\mathbf{G}$ |
| Circular pol. | 0  | F      | 0          | $-\mathbf{E}$ |

イロト イヨト イヨト イヨト

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\Omega}\left(\vartheta, \ \phi\right) &= \frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\Omega}\left(\vartheta\right) \left[1 - P_T \boldsymbol{\Sigma}\left(\vartheta\right) \cos\left(2\phi\right) \\ &+ P_x \left(-P_T \mathbf{H}\left(\vartheta\right) \sin\left(2\phi\right) + P_\circ \mathbf{F}\left(\vartheta\right)\right) \\ &- P_y \left(P_T \mathbf{P}\left(\vartheta\right) \cos\left(2\phi\right) - \mathbf{T}\left(\vartheta\right)\right) \\ &- P_z \left(-P_T \mathbf{G}\left(\vartheta\right) \sin\left(2\phi\right) + P_\circ \mathbf{E}\left(\vartheta\right)\right)\right]. \end{aligned}$$

## CBELSA/TAPS





Stefan Runkel (PI Bonn)

The Polarized target at CBELSA/TAPS

07.03.2018 3/21

イロト イロト イヨト イヨト

## **CBELSA/TAPS - Polarized Target**





Work in 2017

- Merging the Dubna/Mainz and Bonn Systems.
- February Transport of the cryostat, the <sup>3</sup>*He*-system, temperature measurement to Bonn.
  - Connecting the vacuum system.
  - Leak test at room temperature.
  - Change Front part of the cryostat.
  - Implement the Dubna/Mainz DAQ in the Bonn system.

…

May First cooling test,  $T_{min} = 60 \text{ mK}$ .

September Test of all components,  $T_{min} < 30 \text{ mK}$  $P_{max} \approx 45 \%$ .

December First measurement.

Dubna: Y. Usov, N. Borisov, I. Gorodnov et al. Mainz: A. Thomas et al. Bochum: G. Reicherz. Bonn: S. Goertz, H. Dutz, S. Runkel et al

#### Target Polarization and Beam Heating - December 2017







#### Target Polarization and Beam Heating - December 2017



- NMR coil at the edge of the container.
- The polarization lost due to the beam was not measured with the NMR system.





- NMR coil at the edge of the container.
- The polarization lost due to the beam was not measured with the NMR system.
- Change of the geometry for the NMR coil.



## A First Look into the $2\pi^0$ Channel



T. Seifen et al.

イロト イポト イヨト イヨト

# A First Look into the $2\pi^0$ Channel





T. Seifen et al.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

#### Target Polarization and Beam Heating - May 2018





- Butanol doped with 0.45 % Porphyrexide.
- $\label{eq:pmax} \begin{array}{l} \textbf{P}_{max} + \approx 83 \,\%, \\ P_{max} \approx 86 \,\%, \\ \tau_{rel, \ without \ beam} \approx 1800 \, h, \\ \tau_{rel, \ with \ beam} \approx 500 \, h. \end{array}$
- Coil wound through the Target container and the beam axis.
- Difference in the relaxation time with and without beam can be seen directly.

#### Target Polarization and Beam Heating - May 2018





- Butanol doped with 0.45 % Porphyrexide.
- $\label{eq:pmax} \begin{array}{l} \textbf{P}_{max} + \approx 83 \,\%, \\ P_{max} \approx 86 \,\%, \\ \tau_{rel, \ without \ beam} \approx 1800 \, h, \\ \tau_{rel, \ with \ beam} \approx 500 \, h. \end{array}$
- Coil wound through the Target container and the beam axis.
- Difference in the relaxation time with and without beam can be seen directly.
- Two possibilities:
  - Reduce the beam intensity,
  - Increase the temperature.

A B > A B

### Target Polarization and Beam Heating - May 2018





- Butanol doped with 0.45 % Porphyrexide.
- $\label{eq:pmax} \begin{array}{l} \textbf{P}_{max} + \approx 83 \,\%, \\ P_{max} \approx 86 \,\%, \\ \tau_{rel, \ without \ beam} \approx 1800 \, h, \\ \tau_{rel, \ with \ beam} \approx 500 \, h. \end{array}$
- Coil wound through the Target container and the beam axis.
- Difference in the relaxation time with and without beam can be seen directly.

| 4 同 ト 4 三 ト 4 三 ト

- To minimize the beam heating effect, the temperature of the helium bath in the mixing chamber was increased to 27 mK.
- ▶ Next measurement with D-Butanol start in October. Two production runs planned in 2019.

# $\gamma p \rightarrow \pi^0 p$ , Target Asymmetry

631 MeV < E, < 670 MeV 670 MeV < E, < 701 MeV 701 MeV < E, < 732 MeV 732 MeV < E, < 769 MeV 769 MeV < E, < 799 MeV 0.5 868 MeV < E, < 900 MeV 900 MeV < E, < 932 MeV 932 MeV < E, < 977 MeV 799 MeV < E, < 834 MeV 834 MeV < E, < 868 MeV 0. 99-AT APROPER SH 00000 -0.5 977 MeV < E, < 1017 MeV < 1017 MeV < E, < 1060 MeV + 1060 MeV < E, < 1102 MeV + 1102 MeV < E, < 1148 MeV + 1148 MeV < E, < 1198 MeV 0.5 \*\*\*\*\* -0.5 0.5 0.5 -0.5 0.5 -0.50.5 0.5 -0.5 -0.5  $\cos \theta_{-0}$ 2018 data 2010 data JuBo 2015 ----- BnGa 2013 SAID CM12 - MAID

J. Hartmann et al.

イロト イロト イヨト イヨト



# $\gamma p \rightarrow \pi^0 p$ , Target Asymmetry



J. Hartmann et al.

イロト イポト イヨト イヨト

## Continuous and Frozen-Spin Target





- > 2018/2019: Measurements in Bonn with the Dubna/Mainz frozen-spin target.
- A new frozen-spin cryostat is under construction by Dubna and will be finished in the end of 2018.
- A continuous mode target is under construction by Bonn.

## $4\pi$ -Continuous Target





#### Design conditions:

- Current of 90 A for internal, longitudinal polarization-magnet.
- Cooling power of 100 mW at 200 mK for DNP.
- Minimal temperature 30 mK for transverse polarized targets.

イロト イロト イヨト イヨト

# $4\pi$ -Continuous Target





■ ► ■ つへの 07.03.2018 11/21

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

## Precooling





- ▶ Four heat exchangers and two heat sinks to cool and liquefy the circulating mixture.
- ▶ HE4 inside the evaporator to ensure 1 K after the precooling stages.
- Circulating <sup>3</sup>He-<sup>4</sup>He-mixture cooled by <sup>4</sup>He from the heat sinks and by evaporating mixture from the dilution unit.

(日)







- ► HE1 HE3 counterflow heat exchangers with more than two streams.
- Calculations of the precooling stages only with simple models for two stream heat exchangers.

イロト イボト イヨト イヨト

# Precooling





► The heat exchange between the different streams and the solid is given by:

$$\dot{Q}_{\text{solid}}(\Delta T_{\text{m}}) = \alpha \cdot A \Delta T_{\text{m}} \quad \text{mit} \quad \alpha \propto \text{Nu}(\text{Re}, \text{Pr}) \cdot \frac{\lambda}{L}.$$

- NUSSELT-, PRANDLT- and REYNOLDS-Number are characteristic flow parameter depending on the geometry.
- Characteristic flow parameter given by the dimensionless NAVIER-STOKES equations.
- Idea: Solve the NAVIER-STOKES equations with a finite-volume-method.

 $\Rightarrow$  CFD-Simulation

イロト イボト イヨト イヨト

## Computational Fluid Dynamics



The basis of almost all CFD simulations is

ρ: density

 φ: fluid dynamic parameter (e.g. fluid velocity <u>u</u>, enthalpy h)

$$\frac{\partial}{\partial t} \left( \rho \phi \right) + \underbrace{\nabla \cdot \left( \rho \underline{u} \phi \right)}_{F_{\phi}} = D_{\phi} + Q_{\phi}.$$

| GI.    | $\phi$   | $D_{\phi}$                   | $Q_{\phi}$                                                                                                                                     |
|--------|----------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. KON | 1        | 0                            | 0                                                                                                                                              |
| 2. IMP | <u>u</u> | $\nabla \cdot \underline{a}$ | $-\nabla \cdot \mathbf{p} + \rho \underline{g}$                                                                                                |
| 3. ENG | h        | $\nabla(k\nabla T)$          | $\frac{\partial p}{\partial t} + \underline{u} \cdot \nabla \rho + \nabla \cdot \left(\underline{\underline{\tau}} \cdot \underline{u}\right)$ |

イロト イポト イヨト イヨト

- $F_{\phi}$ : convective flow, describes the transport of the stream given by  $\phi$
- ▶  $D_{\phi}$ : diffusive flow, describes the changes in space given by  $\phi$
- ▶  $Q_{\phi}$ : all other distributions given by  $\phi$

 $\Rightarrow$  Using openFOAM with snappyHexMesh for the simulation and the creation of the mesh.

## Computational Fluid Dynamics

Compressible fluid:

1. Mass:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{u}) = \mathbf{0}$$

2. Motion:

3. Enthalpy:

$$\frac{\partial}{\partial t} \left( \rho \underline{u} \right) + \nabla \cdot \left( \rho \underline{u} \underline{u} \right) = \nabla \cdot \underline{a} - \nabla p + \rho \underline{g}$$

 $\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \underline{u} h) = \frac{\partial p}{\partial t} + \underline{u} \cdot \nabla p + \nabla (k \nabla T) + \nabla \cdot \left(\underline{\underline{\tau}} \cdot \underline{u}\right)$ 

Equations of state (e. g. ideal gas):
n = aBT

$$p = p m$$
  
 $dh = c_p dT$ 

Specific material equations:

 $\dot{Q} = -k\nabla T$ 

Stress-tensor:

$$\underline{\boldsymbol{\sigma}} = \eta \left[ 2\underline{\boldsymbol{S}} - \frac{2}{3} \left( \nabla \cdot \underline{\boldsymbol{u}} \right) \underline{\boldsymbol{\delta}} \right]$$
$$\underline{\boldsymbol{S}} = \frac{1}{2} \left[ \nabla \underline{\boldsymbol{u}} + \left( \nabla \underline{\boldsymbol{u}} \right)^T \right]$$
$$\underline{\underline{\boldsymbol{\tau}}} = \underline{\boldsymbol{\sigma}} + p \mathbb{1}$$

▲□▶▲□▶▲目▶▲目▶ 目 のQの



## Heat Exchanger 1



UNIVERSITÄT BONN

- Data for  $\dot{n}_{^{3}\text{He}} = 1 \text{ mmol s}^{-1}$ .
- Well defined temperature gradient along the heat exchanger.
- Temperature after the last stage of 8 K is reached.
- Simulation performed for all heat exchangers and a circulation rate of 1 to 20 mmol s<sup>-1</sup>

• • • • • • • • • • • •

| Simulation                |                                  | Measurement                  |  |  |
|---------------------------|----------------------------------|------------------------------|--|--|
| HE1 <sub>in</sub>         | 170 K                            | 170(5) K                     |  |  |
| HE1 <sub>middle</sub>     | 43 K                             | 43(3) K                      |  |  |
| HE1 <sub>out</sub>        | 8 K                              | 8(1)K                        |  |  |
| $p_{^{3}\text{He}_{in}}$  | 100 mbar                         | 105(10) mbar                 |  |  |
| $p_{^{3}\text{He}_{out}}$ | $2.1 	imes 10^{-2}  \text{mbar}$ | $2.2(2) \times 10^{-2}$ mbar |  |  |
| $p_{\rm ^4He_{out}}$      | 15 mbar                          | 15(3) mbar                   |  |  |

## Heat Exchanger 1





 $\Rightarrow$  Laminar flow through turbine stage.

| Stef | an R | unkel | (PI I | Bonn) |
|------|------|-------|-------|-------|
|      |      |       |       |       |

The Polarized target at CBELSA/TAPS

07.03.2018 18/21

イロト イロト イヨト イヨト





Heat exchanger 1 & 2 are in series. Thus, they can be seen as one unit.

- <sup>4</sup>He-flowrate necessary to cool the circulating <sup>3</sup>He-<sup>4</sup>He-mixture to the temperature of the separator.
- ▶ First tests done with <sup>4</sup>He, simulation performed up to 15 % <sup>4</sup>He in circulating <sup>3</sup>He.

## Heat Exchanger 3





Condenser: phase-boundary between liquid and gas not included in the mesh.

- <sup>4</sup>He<sub>in</sub>, gets superfluid.
  - Only the change in the heat capacity is included.
  - Heat conductivity and viscosity have to be implemented. (ongoing work)
- ▶ <sup>4</sup>He from the evaporator at a higher temperature as calculated.

< E

# Summary & Outlook



- 2017, the Dubna/Mainz dilution cryostat was sent to Bonn and integrated in the Bonn control system.
- Production run in December 2017 and May 2018.
- First results are promising and the analysis is ongoing.
- A new frozen-spin dilution cryostat for Bonn is under construction by DIJN.
- First tests of the new continuous mode dilution cryostat were performed and compared to the existing simulation.
- The data of the precooling stages are in agreement with the simulation. (Excluding HE3, where some deviations were expected.)
- ► For 2019, measurements at CBELSA/TAPS are planned with the existing setup.
- Test of the Dubna/Bonn frozen-spin target.
- > Tests of the new frozen-spin target and optimizing the operation parameter.
- Including the superfluid behaviour of helium in the simulation model.
- Preparing the next tests of the continuous dilution refrigerator in Bonn.