

9-14 September 2018 University of Ferrara Europe/Rome timezone

The Wonder of Spin Dynamics in Quantum Chromodynamics

Jianwei Qiu Theory Center, Jefferson Lab

Spin = an intrinsic and quantum property of all particles *regardless* if they are elementary or composite

a spinning tippy-top

Picture from M. Stratmann, RIKEN Spin Lectures, 2017

a spinning tippy-top

Picture from M. Stratmann, RIKEN Spin Lectures, 2017

Spin = an intrinsic and quantum property of all particles *regardless* if they are elementary or composite

Standard Model of Elementary Particles

a spinning tippy-top

Picture from M. Stratmann, RIKEN Spin Lectures, 2017

Spin = an intrinsic and quantum property of all particles *regardless* if they are elementary or composite

Nuclear Spin: I

Theory of NMR slideplayer.com

a spinning tippy-top

Picture from M. Stratmann, RIKEN Spin Lectures, 2017

Spin = an intrinsic and quantum property of all particles *regardless* if they are elementary or composite

Nuclear Spin: I

The world would be very different without spin!

Outline of the rest of my talk

QCD and spin of nucleon

Questions driving the spin physics

Dual roles of the hadron spin

□ The wonder of spin dynamics in QCD:

Surprises, crisis, and advances

♦ Past, present, and future

□ Summary and outlook

If we do not understand proton spin, we do not know QCD!

QCD and spin of nucleon

Our understanding of the nucleon and its spin evolves:

- \diamond A strongly interacting, relativistic bound state of quarks and gluons
- $\diamond\,$ Understanding it fully is still beyond the best minds in the world

From quantum mechanics to quantum field theory – QCD:

 \Rightarrow Spin of a composite object in QM: $\vec{S} = \sum_{i=1}^{N} \vec{s}_{i}$

N is finite!

 \diamond Proton spin in QCD = Proton's angular momentum when it is at the rest

i=1

• QCD energy-momentum tensor & angular momentum density:

$$M^{\alpha\mu\nu} = T^{\alpha\nu}x^{\mu} - T^{\alpha\mu}x^{\nu} \qquad \qquad J^{i} = \frac{1}{2}\epsilon^{ijk}\int d^{3}x M^{0jk}$$

• Proton spin: $S(\mu) = \sum_{r} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2}$ As a quantum Probability!

Questions driving the spin physics

GPDs!

Dual roles of the hadron spin

Understand the hadron spin as its intrinsic quantum property:

$$= \sum \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle$$

Role of the quark & gluon properties & their dynamics?

 A_L, A_N

Proton Spin

❑ Use the spin orientation as a tool to help explore QCD dynamics:

♦ Asymmetry with both beams polarized: $A_{LL} = \frac{[\sigma(+,+) - \sigma(+,-)] - [\sigma(-,+) - \sigma(-,-)]}{[\sigma(+,+) + \sigma(+,-)] + [\sigma(-,+) + \sigma(-,-)]} \quad \text{for } \sigma(s_1,s_2)$

Asymmetry with one beam polarized:

$$A_L = \frac{[\sigma(+) - \sigma(-)]}{[\sigma(+) + \sigma(-)]} \quad \text{for } \sigma(s) \qquad A_N = \frac{\sigma(Q, \vec{s}_T) - \sigma(Q, -\vec{s}_T)}{\sigma(Q, \vec{s}_T) + \sigma(Q, -\vec{s}_T)}$$

♦ Access to quantum effect:

The past: naïve quark model, ...

□ Proton wave function – the state:

$$\begin{split} |p\uparrow\rangle &= \frac{1}{\sqrt{18}} \left[uud(\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow -2\uparrow\uparrow\downarrow) + udu(\uparrow\uparrow\downarrow + \downarrow\uparrow\uparrow -2\uparrow\downarrow\uparrow) \\ + duu(\uparrow\downarrow\uparrow + \uparrow\uparrow\downarrow -2\downarrow\uparrow\uparrow) \right] \\ &= \mathsf{Normalization:} \\ \langle p\uparrow |p\uparrow\rangle &= \frac{1}{18} [(1+1+(-2)^2) + (1+1+(-2)^2) + (1+1+(-2)^2)] = 1 \\ \hline \mathsf{Charge:} \\ \hat{Q} &= \sum_{i=1}^{3} \hat{Q}_i \\ \langle p\uparrow |\hat{Q}|p\uparrow\rangle &= \frac{1}{18} [(\frac{2}{3} + \frac{2}{3} - \frac{1}{3})(1+1+(-2)^2) + (\frac{2}{3} - \frac{1}{3} + \frac{2}{3})(1+1+(-2)^2) \\ + (-\frac{1}{3} + \frac{2}{3} + \frac{2}{3})(1+1+(-2)^2)] = 1 \\ \hline \mathsf{Spin:} \\ \hat{S} &= \sum_{i=1}^{3} \hat{s}_i \\ \langle p\uparrow |\hat{S}|p\uparrow\rangle &= \frac{1}{18} \{ [(\frac{1}{2} - \frac{1}{2} + \frac{1}{2}) + (-\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) + 4(\frac{1}{2} + \frac{1}{2} - \frac{1}{2})] \\ + [\frac{1}{2} + \frac{1}{2} + 4\frac{1}{2}] + [\frac{1}{2} + \frac{1}{2} + 4\frac{1}{2}] \} = \begin{pmatrix} 1\\ 2 \\ 2 \\ \end{pmatrix} \\ \hline \mathsf{Magnetic moment:} \\ \mu_p &= \langle p\uparrow |\sum_{i=1}^{3} \hat{\mu}_i(\hat{\sigma}_3)_i |p\uparrow\rangle \\ = \frac{1}{3} [4\mu_u - \mu_d] \\ \mu_n &= \frac{1}{3} [4\mu_d - \mu_u] \\ \hline \mu_u \approx \frac{2/3}{-1/3} = -2 \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_n \end{pmatrix}_{\mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_p \end{pmatrix}_{\mathsf{Exp}} = -0.68497945(58) \\ \hline \mathsf{Magnetic moment:} \\ \begin{pmatrix} \mu_n \\ \mu_n \end{pmatrix}_{\mathsf{Magnetic m$$

The surprise: "The Plot", ...

□ EMC (European Muon Collaboration '87) – more than 30 years ago:

♦ Very little of the proton spin is carried by quarks

The present: Proton Spin, ...

The sum rule:

$$S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)$$

- Many possibilities of decompositions connection to observables?
- Intrinsic properties + dynamical motion and interactions

□ An incomplete story:

Dual roles of proton spin: property vs. tool!

How much proton spin is at small-x?

Global fit and simulation:

The future: JLab12, ...

□ JLab 12GeV – upgrade project just completed:

Plus many more JLab experiments, COMPASS, Fermilab-fixed target expts

The future: EIC, ...

The EIC White Paper

□ One-year of running at EIC:

x∆ā x∆u 0.04 0.04 $Q^2 = 10 \text{ GeV}^2$ 0.02 0.02 current data 0 0 0.5 -0.02 0.02 $\int_{01} \Delta g(x,Q^2) dx$ DSSV -0.04 0.04 w/ EIC data 0.3 x∆g xΔs 0.04 **Before/after** 0.2 0.02 0.1 DSSV+ -0.5 0 EIC 5×100 5×250 -0 -0.02 EIC 20×250 -0.1 E -0.04 $O^2 = 10 \text{ GeV}^2$ all uncertainties for $\Delta \chi^2 = 9$ 0.2 -1 10 -2 10 -1 10 -2 10 -1 1 π π 0.3 0.35 0.4 0.45 $\Delta\Sigma(x,Q^2) dx$ No other machine in the world can achieve this! 0.001

Wider Q² and x range including low x at EIC!

□ Ultimate solution to the proton spin puzzle:

 \Rightarrow Precision measurement of $\Delta g(x)$ – extend to smaller x regime

♦ Orbital angular momentum contribution – measurement of TMDs & GPDs!

Transverse spin

□ Two-quark correlator:

$$\Phi_{ij}(k, P, S) = \int d^4 z \, e^{ik \cdot z} \langle PS | \bar{\psi}_j(0) \, \psi_i(z) | PS \rangle$$

4-independent collinear d.o.f. for spin-1/2 quarks:

3 well-known leading power quark parton distributions:

$$q(x) = \frac{1}{4\pi} \int dz^{-} e^{iz^{-}xP^{+}} \langle P, S | \bar{\psi}(0) \gamma^{+} \psi \left(0, z^{-}, \mathbf{0}_{\perp}\right) | P, S \rangle$$
$$\Delta q(x) = \frac{1}{4\pi} \int dz^{-} e^{iz^{-}xP^{+}} \langle P, S | \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi \left(0, z^{-}, \mathbf{0}_{\perp}\right) | P, S \rangle$$

 $\boldsymbol{\delta}q\left(x\right) = \frac{1}{4\pi} \int dz^{-} e^{iz^{-}xP^{+}} \langle P, S | \bar{\psi}(0) \gamma^{+} \boldsymbol{\gamma}_{\perp} \boldsymbol{\gamma}_{5} \psi\left(0, z^{-}, \mathbf{0}_{\perp}\right) | P, S \rangle$

"unpolarized" - "longitudinally polarized" - "transversity"

Global fit with the help of lattice QCD

□ First global QCD analysis of transversity distribution

using Monte Carlo methodology with lattice QCD constraints

□ Impact of a future SoLID, ...

The challenge: Large A_N

$\Box A_{N}$ - consistently observed for over 35 years! **ANL** – 4.9 GeV **BNL** – 6.6 GeV FNAL – 20 GeV **BNL – 62.4 GeV** 60 60 60 60 PRL 36, 929 (1976) PRD 65, 092008 (2002) PLB 261, 201 (1991) PRL 101, 042001 (2008) PLB 264, 462 (1991) BRAHMS 40 40 40 40 20 20 20 20 A_N (%) $\circ \pi$ 0 0 0 Ο ° ₀ \cap Ą -20 -20 -20 -20 O 0 -40 -40 -40 -40 -60 -60 -60 -60 0.4 0.6 0.2 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.8 X_{F} X_{F} X_{F} X_{F} Survived the highest RHIC energy:

 $A_N \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)} = \frac{\sigma(\ell, \vec{s}) - \sigma(\ell, -\vec{s})}{\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s})}$

Do we understand this?

Do we understand this?

Too small to explain available data!

What do we need?

 $A_N \propto i \vec{s}_p \cdot (\vec{p}_h \times \vec{p}_T) \Rightarrow i \epsilon^{\mu\nu\alpha\beta} p_{h\mu} s_\nu p_\alpha p'_{h\beta}$

Need a phase, a spin flip, enough vectors

□ Vanish without parton's transverse motion:

A direct probe for parton's transverse motion, Spin-orbital correlation, QCD quantum interference

Current understanding of TSSAs

Symmetry plays important role:

Inclusive DIS Single scale

One scale observables – **Q** >> \wedge_{QCD} :

Collinear factorization Twist-3 distributions

~ Moment of TMDs

SIDIS: $Q \sim P_T$ DY: $Q \sim P_T$; Jet, Particle: P_T

 \Box Two scales observables – $Q_1 >> Q_2 \sim \Lambda_{QCD}$:

SIDIS: $Q >> P_{\tau}$

DY: $Q >> P_{T}$ or $Q << P_{T}$

TMD factorization **TMD** distributions

~ Direct k_T info.

Twist-3 distributions relevant to A_N

Twist-2 distributions:

- Unpolarized PDFs:
- Polarized PDFs:

$$q(x) \propto \langle P | \overline{\psi}_{q}(0) \frac{\gamma^{+}}{2} \psi_{q}(y) | P \rangle$$

$$G(x) \propto \langle P | F^{+\mu}(0) F^{+\nu}(y) | P \rangle (-g_{\mu\nu})$$

$$\Delta q(x) \propto \langle P, S_{\parallel} | \overline{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi_{q}(y) | P, S_{\parallel} \rangle$$

$$\Delta G(x) \propto \langle P, S_{\parallel} | F^{+\mu}(0) F^{+\nu}(y) | P, S_{\parallel} \rangle (i\epsilon_{\perp\mu\nu})$$

□ Two-sets Twist-3 correlation functions:

No probability interpretation!

$$\widetilde{T}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$$
Kang, Qiu, 2009

$$\widetilde{\mathcal{T}}_{G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda})$$

$$\widetilde{\mathcal{T}}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$$

$$\widetilde{T}_{\Delta G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right)$$

Role of color magnetic force!

□ Twist-3 fragmentation functions:

See Kang, Yuan, Zhou, 2010, Kang 2010

Collinear twist-3 contribution to A_N

$$d\Delta\sigma(s_T) \equiv d\sigma(s_T) - d\sigma(-s_T)$$

= $H \otimes f_{a/A^{\uparrow}(3)} \otimes f_{b/B(2)} \otimes D_{c/C(2)}$
+ $H' \otimes f_{a/A^{\uparrow}(2)} \otimes f_{b/B(3)} \otimes D_{c/C(2)}$
+ $H'' \otimes f_{a/A^{\uparrow}(2)} \otimes f_{b/B(2)} \otimes D_{c/C(3)}$ \rightarrow Negligible
Kanazawa & Koike (2000)
Metz & Pitonyak (2013)

□ Twist-3 fragmentation contribution:

$$\begin{split} \frac{P_h^0 d\sigma_{pol}}{d^3 \vec{P}_h} &= -\frac{2\alpha_s^2 M_h}{S} \, \epsilon_{\perp \mu \nu} \, S_{\perp}^{\mu} P_{h\perp}^{\nu} \sum_i \sum_{a,b,c} \int_{z_{min}}^1 \frac{dz}{z^3} \int_{x'_{min}}^1 \frac{dx'}{x'} \frac{1}{x'S + T/z} \frac{1}{-x\hat{u} - x'\hat{t}} \\ &\times \frac{1}{x} h_1^a(x) \, f_1^b(x') \left\{ \left(\hat{H}^{C/c}(z) - z \frac{d\hat{H}^{C/c}(z)}{dz} \right) S_{\hat{H}}^i + \frac{1}{z} \, H^{C/c}(z) \, S_{H}^i \right. \\ &\quad + 2z^2 \int \frac{dz_1}{z_1^2} \, PV \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \, \hat{H}_{FU}^{C/c,\Im}(z, z_1) \frac{1}{\xi} \, S_{\hat{H}_{FU}}^i \right\} \\ &2z^3 \int_z^\infty \frac{dz_1}{z_1^2} \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \hat{H}_{FU}^{\Im}(z, z_1) = H(z) + 2z \hat{H}(z) \quad \boxed{3\text{-parton correlator}} \\ &\hat{H}(z) = H_1^{\perp(1)}(z) \quad \boxed{\text{Collins-type function}} \end{split}$$

Collinear twist-3 contribution to A_N

Fragmentation + QS (fix through Sivers function):

Paradigm shift: 3D structure of hadrons

 $xp,k_{\rm T}$

Х

□ Cross sections with two-momentum scales observed:

 $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$

 \diamond Hard scale: Q_1 localizes the probe to see the quark or gluon d.o.f.

 \diamond "Soft" scale: Q_2 could be more sensitive to hadron structure, e.g., confined motion

□ Two-scale observables with the hadron broken:

♦ Natural observables with TWO very different scales

TMD factorization: partons' confined motion is encoded into TMDs

Paradigm shift: 3D structure of hadrons

 xp,k_{T}

Х

Cross sections with two-momentum scales observed:

 $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$

 \diamond "Soft" scale: Q_2 could be more sensitive to hadron structure, e.g., confined motion

Two-scale observables with the hadron unbroken:

♦ Natural observables with TWO very different scales

 \diamond GPDs: Fourier Transform of t-dependence gives spatial b_T-dependence

TMDs: confined motion & spin correlation

□ Power of spin – many more correlations:

The present: Theory is solid

TMDs & SIDIS as an example:

 \diamond Low P_{hT} (P_{hT} << Q) – TMD factorization:

 $\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f(x, k_\perp) \otimes \mathcal{D}_{f \to h}(z, p_\perp) \otimes \mathcal{S}(k_{s\perp}) + \mathcal{O} \left| \frac{P_{h\perp}}{Q} \right|$

 \diamond High $P_{hT}(P_{hT} \sim Q)$ – Collinear factorization:

 $\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q, P_{h\perp}, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{P_{h\perp}}, \frac{1}{Q}\right)$

- ♦ **P**_{hT} Integrated Collinear factorization: $\sigma_{\text{SIDIS}}(Q, x_B, z_h) = \tilde{H}(Q, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{O}\right)$
- \diamond Very high P_{hT} >> Q Collinear factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \sum_{abc} \hat{H}_{ab \to c} \otimes \phi_{\gamma \to a} \otimes \phi_b \otimes D_{c \to h} + \mathcal{O}\left(\frac{1}{Q}, \frac{Q}{P_{h\perp}}\right)$$

□ SIDIS is the best for probing TMDs:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) + A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

Modified universality for TMDs

Definition:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\mathbf{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle$$

Gauge links:

□ Process dependence:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

Collinear factorized PDFs are process independent

Critical test of TMD factorization

□ Parity – Time reversal invariance:

 $f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) = f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},-\vec{S})$

Definition of Sivers function:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) \equiv f_{q/h}(x,k_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/h^{\uparrow}}(x,k_{\perp})\,\vec{S}\cdot\hat{p}\times\hat{\mathbf{k}}_{\perp}$$

□ Modified universality:

$$\Delta^N f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,k_{\perp}) = -\Delta^N f_{q/h^{\uparrow}}^{\text{DY}}(x,k_{\perp})$$

The spin-averaged part of this TMD is process independent, but, spin-averaged Boer-Mulder's TMD requires the sign change! Same PT symmetry examination needs for TMD gluon distributions!

Hint of the sign change: A_N of W production

Data from STAR collaboration on A_N for W-production are
consistent with a sign change between SIDIS and DYConsistent with COMPASS dataSTAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

Hint of the TMD sign change from lattice QCD

M. Engelhardt

□ Gauge link for lattice calculation:

Staple-shaped gauge link $\mathcal{U}[0, \eta v, \eta v + b, b]$

\Box Normalized moment of Sivers function – at given b_T:

Confining radius in color distribution?

□ The "big" question:

How color is distributed inside a hadron? (clue for color confinement?)

Hadron is colorless and gluon carries color

Parton density's spatial distributions – a function of x as well (more "proton"-like than "neutron"-like?) – GPDs

GPDs: Density distributions & spin correlation

$$\Box \text{ Quark "form factor":} F_q(x,\xi,t,\mu^2) = \int \frac{d\lambda}{2\pi} e^{-ix\lambda} P' \bar{\psi}_q(\lambda/2) \frac{\gamma \cdot n}{2P \cdot n} \psi_q(-\lambda/2) |P\rangle$$

$$\equiv H_q(x,\xi,t,\mu^2) \left[\bar{U}(P') \gamma^{\mu} U(P) \right] \frac{n_{\mu}}{2P \cdot n}$$

$$+ E_q(x,\xi,t,\mu^2) \left[\bar{U}(P') \frac{i\sigma^{\mu\nu}(P'-P)_{\nu}}{2M} U(P) \right] \frac{n_{\mu}}{2P \cdot n} P'$$
with $\xi = (P'-P) \cdot n/2$ and $t = (P'-P)^2 \Rightarrow -\Delta_{\perp}^2$ if $\xi \to 0$
 $\tilde{H}_q(x,\xi,t,Q), \quad \tilde{E}_q(x,\xi,t,Q)$
Different quark spin projection
 $H_q(x,0,0,\mu^2) = q(x,\mu^2)$
The limit when $\xi \to 0$

□ Total quark's orbital contribution to proton's spin:

Ji, PRL78, 1997

$$egin{array}{rl} J_q &=& \displaystylerac{1}{2} \lim_{t o 0} \int dx \, x \, \left[H_q(x,\xi,t) \,+\, E_q(x,\xi,t)
ight] \ &=& \displaystylerac{1}{2} \Delta q \,+\, L_q \end{array}$$

JLab12 – valence quarks, EIC – sea quarks and gluons

GPDs: Density distributions & spin correlation

□ GPDs of quarks and gluons:

 $\begin{array}{ll} H_q(x,\xi,t,Q), & E_q(x,\xi,t,Q), & \mbox{Evolution in Q} \\ \tilde{H}_q(x,\xi,t,Q), & \tilde{E}_q(x,\xi,t,Q) & \mbox{-gluon GPDs} \end{array}$

 $\Box \text{ Imaging (} \xi \to \mathbf{)}: \qquad q(x, b_{\perp}, Q) = \int d^2 \Delta_{\perp} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_q(x, \xi = 0, t = -\Delta_{\perp}^2, Q)$

□ Influence of transverse polarization – shift in density:

Orbital angular momentum

OAM: Correlation between parton's position and its motion – in an averaged (or probability) sense

□ Note:

- Partons' confined motion and their spatial distribution are unique
 the consequence of QCD
- But, the TMDs and GPDs that represent them are not unique!
 - Depending on the definition of the Wigner distribution and QCD factorization to link them to physical observables

Position $\Gamma \times$ Momentum $\rho \rightarrow$ Orbital Motion of Partons

Orbital angular momentum

OAM: Its definition is not unique in gauge field theory!

□ Jaffe-Manohar's quark OAM density:

$$\mathcal{L}_q^3 = \psi_q^\dagger \left[\vec{x} \times (-i\vec{\partial}) \right]^3 \psi_q$$

□ Ji's quark OAM density:

$$L_q^3 = \psi_q^\dagger \left[\vec{x} \times (-i\vec{D}) \right]^3 \psi_q$$

Difference between them:

Hatta, Lorce, Pasquini, ...

compensated by difference between gluon OAM density

represented by different choice of gauge link for OAM Wagner distribution

$$\mathcal{L}_q^3 \left\{ L_q^3 \right\} = \int dx \, d^2 b \, d^2 k_T \left[\vec{b} \times \vec{k}_T \right]^3 \mathcal{W}_q(x, \vec{b}, \vec{k}_T) \left\{ W_q(x, \vec{b}, \vec{k}_T) \right\}$$

with

$$\mathcal{W}_{q}\left\{W_{q}\right\}(x,\vec{b},\vec{k}_{T}) = \int \frac{d^{2}\Delta_{T}}{(2\pi)^{2}} e^{i\vec{\Delta}_{T}\cdot\vec{b}} \int \frac{dy^{-}d^{2}y_{T}}{(2\pi)^{3}} e^{i(xP^{+}y^{-}-\vec{k}_{T}\cdot\vec{y}_{T})}$$
taple" gauge link

JM: "staple" gauge I $\times \langle P' | \overline{\psi}_q(0) \frac{\gamma}{2} \Phi^{\mathrm{JM}\{\mathrm{Ji}\}}(0, y) \psi(y) | P \rangle_{y^+=0}$ Ji: straight gauge link **Gauge link**

between 0 and $y=(y^+=0,y^-,y_{T})$

Orbital angular momentum

OAM: Its definition is not unique in gauge field theory!

□ Jaffe-Manohar's quark OAM density:

$$\mathcal{L}_q^3 = \psi_q^\dagger \left[\vec{x} \times (-i\vec{\partial}) \right]^3 \psi_q$$

□ Ji's quark OAM density:

$$L_q^3 = \psi_q^\dagger \left[\vec{x} \times (-i\vec{D}) \right]^3 \psi_q$$

Difference between them:

 $\diamond\,$ generated by a "torque" of color Lorentz force

Hatta, Yoshida, Burkardt, Meissner, Metz, Schlegel,

. . .

$$\begin{aligned} \mathcal{L}_{q}^{3} - L_{q}^{3} \propto \int \frac{dy^{-} d^{2} y_{T}}{(2\pi)^{3}} \langle P' | \overline{\psi}_{q}(0) \frac{\gamma^{+}}{2} \int_{y^{-}}^{\infty} dz^{-} \Phi(0, z^{-}) \\ \times \sum_{i,j=1,2} \left[\epsilon^{3ij} y_{T}^{i} F^{+j}(z^{-}) \right] \Phi(z^{-}, y) \psi(y) | P \rangle_{y^{+}=0} \end{aligned}$$

"Chromodynamic torque"

Similar color Lorentz force generates the single transverse-spin asymmetry (Qiu-Sterman function), and is also responsible for the twist-3 part of g_2

Unified view of nucleon structure & spin

Position $\Gamma \times$ Momentum $\rho \rightarrow$ Orbital Motion of Partons

Nucleon spin and OAM from lattice QCD

\Box χ QCD Collaboration:

[Deka *et al.* arXiv:1312.4816]

Summary

QCD has been extremely successful in interpreting and predicting high energy experimental data!

- But, we still do not know much about hadron structure and its spin correlation!
- □ Since the "spin crisis" in the 80th, we have learned a lot about proton spin but, still a long way to go!
- TMDs and GPDs, accessible by high energy scattering with polarized beams at JLab12 & EIC, carry important information on hadron's 3D structure, and its correlation with hadron's spin!
 - No "still pictures", but quantum distributions, for hadron structure!

Thank you!

Backup slides

The future: EIC, ...

GPDs: just the beginning

OAM from Generalized TMDs?

Orbital angular momentum contribution

□ The definition in terms of Wigner function:

Ji, Xiong, Yuan, PRL, 2012 Lorce, Pasquini, PRD, 2011 Lorce, et al, PRD, 2012

♦ Gauge invariant:

$$L_q \equiv \frac{\langle P, S | \int d^3 r \,\overline{\psi}(\vec{r}) \gamma^+(\vec{r}_\perp \times i\vec{D}_\perp) \psi(\vec{r}) | P.S \rangle}{\langle P, S | P, S \rangle} = \int (\vec{b}_\perp \times \vec{k}_\perp) W_{FS}(x, \vec{b}_\perp, \vec{k}_\perp) dx \, d^2 \vec{b}_\perp d^2 \vec{k}_\perp$$

♦ Canonical:

$$l_q \equiv \frac{\langle P, S | \int d^3 r \, \overline{\psi}(\vec{r}) \gamma^+(\vec{r}_\perp \times i \vec{\partial}_\perp) \psi(\vec{r}) | P.S \rangle}{\langle P, S | P, S \rangle} = \int (\vec{b}_\perp \times \vec{k}_\perp) W_{LC}(x, \vec{b}_\perp, \vec{k}_\perp) dx \, d^2 \vec{b}_\perp d^2 \vec{k}_\perp$$

♦ Gauge-dependent potential angular momentum – the difference:

$$l_{q,pot} \equiv \frac{\langle P, S | \int d^3r \, \overline{\psi}(\vec{r}) \gamma^+(\vec{r}_{\perp} \times (-g\vec{A}_{\perp}))\psi(\vec{r}) | P.S \rangle}{\langle P, S | P, S \rangle} = L_q - l_q$$
Quark-gluon correlation
Transverse
momentum
Transverse
position
$$\vec{k}_{\perp} = xP^+$$

$$\vec{b}_{\perp} = V^+$$

$$\langle \mathcal{O} \rangle = \int \mathcal{O}(\vec{b}_{\perp}, \vec{k}_{\perp}) W_{GL}(x, \vec{b}_{\perp}, \vec{k}_{\perp}) \, dx \, d^2 \vec{b}_{\perp} d^2 \vec{k}_{\perp}$$
Gauge-link dependent Wigner function
Same for gluon OAM

Orbital angular momentum contribution

The Wigner function:

 \diamond Quark:

$$W_{GL}^{q}(x,\vec{k}_{\perp},\vec{b}_{\perp}) = \int \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} \int \frac{dz^{-}d\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik\cdot z} \left\langle P + \frac{\vec{\Delta}_{\perp}}{2} \right| \overline{\Psi}_{GL}\left(-\frac{z}{2}\right)\gamma^{+}\Psi_{GL}\left(\frac{z}{2}\right) \left| P - \frac{\vec{\Delta}_{\perp}}{2} \right\rangle$$

Ji, Xiong, Yuan, PRL, 2012

Lorce, Pasquini, PRD, 2011

Lorce, et al, PRD, 2012

Gauge to remove "GL"

GL: gauge link dependence

$$\Psi_{FS}(z) = \mathcal{P}\left[\exp\left(-ig \int_{0}^{\infty} d\lambda \, z \cdot A(\lambda z)\right)\right] \psi(z)$$
 Fock-Schwinger
$$\Psi_{LC}(z) = \mathcal{P}\left[\exp\left(-ig \int_{0}^{\infty} d\lambda \, n \cdot A(\lambda n + z)\right)\right] \psi(z)$$
 Light-cone

♦ Gluon:

$$W_{GL}^{g}(x,\vec{k}_{\perp},\vec{b}_{\perp}) = \int \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} \int \frac{dz^{-}d\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik\cdot z} \left\langle P + \frac{\vec{\Delta}_{\perp}}{2} \right| \mathbf{F}_{GL}^{i+}\left(-\frac{z}{2}\right) \mathbf{F}_{GL}^{+i}\left(\frac{z}{2}\right) \left| P - \frac{\vec{\Delta}_{\perp}}{2} \right\rangle$$

Gauge-invariant extension (GIE):