Tensor Polarization: A New Window into Nuclear Structure

Dr. Elena Long

SPIN 2018

University of Ferrara

September 8th, 2018

NUniversity of New Hampshire

SPIN 2018

Where Do We Go From Here?

New Degree of Freedom: Tensor Polarization

"The proton, **deuteron**, and α particle are most interesting to study because they are among the simplest nuclear structures."

RW McAllister, R Hofstadter, Phys.Rev. 102 851 (1956)

LONG RANGE PLAN NUCLEAR SCIENCE

"A tensor-polarized deuteron

target ... is under development

to measure spin structure in a spin-1 nucleus in Hall Cat JLab.

9/8/2018

SPIN 2018

Shout out to Eva Weiner, Mother of Modern Nuclear Physics Targets. She built Hofstadter's Nobel Prize winning target but tragically died in a 1953 car crash.

Where Do We Go From Here?

New Degree of Freedom: Tensor Polarization

"The proton, **deuteron**, and α particle are most interesting to study because they are among the simplest nuclear structures."

RW McAllister, R Hofstadter, Phys.Rev. **102** 851 (1956)

9/8/2018

SPIN 2018

J Forest, et al, PRC 54 646 (1996)

"Normal" Polarization: Vector $P_z = p_+ - p_-$

J Forest, et al, PRC 54 646 (1996)

"Normal" Polarization: Vector $P_z = p_+ - p_-$

(***+*)**-2***1**

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

J Forest, et al, PRC 54 646 (1996)

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

J Forest, et al, PRC 54 646 (1996)

SPIN 2018

A high-luminosity tensorpolarized target has promise as a **novel probe of nuclear physics**

What is Tensor Polarization?

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

J Forest, et al, PRC 54 646 (1996)

SPIN 2018

Current Landscape of Tensor Observables

9/8/2018

SPIN 2018

Current Landscape of Tensor Observables

9/8/2018

SPIN 2018

Elastic T_{20}

Elastic T_{20}

 T_{20} , along with unpol. A & B form factors, -⁸ gave rise to current deuteron understanding

 $T_{20} = \frac{A_{zz}}{d_{20}\sqrt{2}} \text{ on elastic peak} \qquad d_{20} = \frac{3\cos^2\theta^* - 1}{2}$

- At low Q^2 :
- T_{20} well known
- P_{zz} can be extracted from T_{20}
- Completely independent P_{zz} measurement from NMR line-shape P_{zz}

J Forest, et al, PRC 54 646 (1996)

SPIN 2018

Elastic T_{20}

 T_{20} , along with <u>unpol</u>. A & B form factors, gave rise to current deuteron understanding

 $T_{20} = \frac{A_{ZZ}}{d_{20}\sqrt{2}} \text{ on elastic peak} \qquad d_{20} = \frac{3\cos^2\theta^* - 1}{2}$

- At low Q^2 :
- T_{20} well known
- P_{zz} can be extracted from T_{20}
- $\circ~$ Completely independent P_{zz} measurement from NMR line-shape P_{zz}

JLab E12-15-005 will measure $T_{\rm 20}$ over the largest & highest Q^2 range

 \circ Important cross-check of Hall C high Q^2 data

World Data from R Holt, R Gilman, Rept.Prog.Phys. 75 086301 (2012)

J Forest, et al, PRC 54 646 (1996)

9/8/2018

SPIN 2018

Current Landscape of Tensor Observables

Structure Functions

Scattering on:

Unpolarized Targets

$$W_{\mu\nu} = -\alpha F_1 + \beta F_2$$

Existence of quarks & quark spin!

e

e'

SPIN 2018

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

0.012 All conventional models 0.01 predict small or vanishing 0.008 Sargsian (lc) Sargsian (vn) values of b_1 0.006 Miller (One π Exch.) 0.004 0.002 9 -0.002-0.004-0.006 -0.008-0.01 -0.012 0.2 0.3 0.5 0.1 0.4 0.6 0 A Airapetian, et al, PRL 95 242001 (2005) X K Slifer, et al, JLab C12-13-011

9/8/2018

SPIN 2018

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!
- $^{\rm o}$ Any measurement of $b_1 < 0$ indicates exotic physics

SPIN 2018

9/8/2018

 b_1 probes nuclear effects at quark resolution!

 b_1 probes nuclear effects at quark resolution! $b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{q^0(x) - q^{\pm 1}(x)}$

Pionic Effects

HERMES

0.012

0.01

All conventional models
 predict small or vanishing
 values of b₁

 HERMES found something very different!

 $^{\rm o}$ Any measurement of $b_1 < 0$ indicates exotic physics

• Miller b16q at $Q^2 = 1.17 \text{ GeV}^2$ 0.008 - Miller b16q at $Q^2 = 1.76 \text{ GeV}^2$ 0.006 • Miller b16q at $Q^2 = 2.12 \text{ GeV}^2$ - Miller b16q at $Q^2 = 3.25 \text{ GeV}^2$ 0.004 Kumano 0.002 -0.002-0.004-0.006 Predictions using 6q Hidden Color -0.008 -0.01 -0.012 0.2 0.3 0.1 0.4 0.5 0.6 0 X G Miller, PRC 89 045203 (2014) S Kumano, PRD 82 017501 (2010)

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

9/8/2018

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Projected

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!
- JLab HERMES 0.01 Miller b16q E12-13-01 0.008 Sargsian (lc) Sargsian (vn) 0.006 Kumano (With δ_{τ} qbar) 0.004 Kumano (No δ_{T} qbar) Miller (One π Exch.) **a**^{0.002} 0 -0.002-0.004-0.006 0.2 0.3 0.1 0.6 0 0.4 0.5 X
- Any measurement of $b_1 < 0$ indicates exotic physics + In

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011 + Insight in Close-Kumano Sum Rule & Quark Orbital Angular Momentum ^{S Kumano, PRD} **82** 017501 (2010)

0.012

FE Close, S Kumano, PRD **42** 2377 (1990) SK Taneja *et al*, PRD **86** 036008 (2012) G Miller, PRC **89** 045203 (2014)

9/8/2018

SPIN 2018

Current Landscape of Tensor Observables

Current Landscape of Tensor Observables

9/8/2018

SPIN 2018

SPIN 2018

- x > 1 kinematics
- Enhancing tensor polarization

We combine both techniques

- x > 1 kinematics
- Enhancing tensor polarization

We combine both techniques

Deuteron Wavefunction

LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981)

SPIN 2018

Deuteron Wavefunction

LL Frankfurt, MI Strikman, Phys. Rept. **76** 215 (1981)

9/8/2018

SPIN 2018

Deuteron Wavefunction

 $E_{a} = 8.8 \text{ GeV}, Q^{2} = 1.5 \text{ GeV}^{2}$ First calculated in the '70s, A_{zz} can be used in to **V**^R 0.2 discriminate between hard and soft wave functions **AV18** $A_{ZZ} = \frac{2}{f \cdot P_{ZZ}} \left(\frac{\sigma_p - \sigma_u}{\sigma_u} \right)$ 0% 0 -0.2 In the impulse approximation, A_{zz} is directly related to the -0.4 S- and D-states $S \rightarrow u(k)$ $D \rightarrow w(k)$ -0.6 $\propto \frac{\frac{1}{2}w^{2}(k) - u(k)w(k)\sqrt{2}}{u^{2}(k) + w^{2}(k)}$ -0.8 A_{zz} -1 -100% CDBonn -1.2 Modern calculations indicate a large separation of hard and soft WFs begins just above the quasi-elastic peak at x > 1.3-1.4 0.40.6 0.8 1.2 1.4 1.6 1.8 LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981) M Sargsian

9/8/2018

SPIN 2018

Deuteron Wavefunction

 $E_{a} = 8.8 \text{ GeV}, Q^{2} = 1.5 \text{ GeV}^{2}$ First calculated in the '70s, A_{zz} can be used in to **V**^R 0.2 discriminate between hard and soft wave functions **AV18** $A_{ZZ} = \frac{2}{f \cdot P_{ZZ}} \left(\frac{\sigma_p - \sigma_u}{\sigma_u} \right)$ 0 0% -0.2 ~60% In the impulse approximation, A_{zz} is directly related to the -0.4 S- and D-states $S \rightarrow u(k)$ $D \rightarrow w(k)$ -0.6 $\propto \frac{\frac{1}{2}w^{2}(k) - u(k)w(k)\sqrt{2}}{u^{2}(k) + w^{2}(k)}$ -0.8 A_{zz} -1 -100% CDBonn -1.2 Modern calculations indicate a large separation of hard and soft WFs begins just above the quasi-elastic peak at x > 1.3-1.4 0.40.6 0.8 1.2 1.4 1.6 1.8 LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981) M Sargsian

9/8/2018

SPIN 2018

Deuteron Wavefunction

Elena Long <elena.long@unh.edu>

Deuteron Wavefunction

SPIN 2018

9/8/2018

9

Relativistic NN Bound System

Unpolarized

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

M Sargsian, Tensor Spin Observables Workshop (2014)

SPIN 2018

Relativistic NN Bound System

Tensor Polarized

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

With tensor A_{zz} , significant difference at much lower p > 300 MeV/c and x > 1.1

M Sargsian, Tensor Spin Observables Workshop (2014)

SPIN 2018

Relativistic NN Bound System

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

With tensor A_{zz} , significant difference at much lower p > 300 MeV/c and x > 1.1

M Sargsian, Tensor Spin Observables Workshop (2014)

SPIN 2018

No current quasi-elastic tensor measurements

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

9/8/2018

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

9/8/2018

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

Decades of theoretical interest that **we can only now probe** with a high-luminosity tensorpolarized target

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

Decades of theoretical interest that **we can only now probe** with a high-luminosity tensorpolarized target

Importance ranges from understanding shortrange correlations to the equations of state of neutron stars

9/8/2018

J. Phys.: Conf. Ser. 543 011001-012015 (2014) http://iopscience.iop.org/1742-6596/543/1 ^[1] A. Bacchetta, Ph.D. Thesis (2002) arXiv:0212025

And That's Just the Beginning!

Growing tensor program:

- DIS *b*₁: <u>Approved</u> (C12-13-011)
- QE and Elastic A_{zz} : <u>Approved</u> (C12-15-005)
- Exotic gluon states through Δ (LOI12-16-006)

Physics accessible with a tensor polarized target:

- Orbital Angular Momentum & Spin Crisis
- Gravitomagnetic Form Factors
- Pionic Effects
- Polarized Sea Quarks
- Tensor polarized antiquarks
- Linking traditional nuclear physics and quark-gluon picture
- Final State Interactions
- Gluonic Effects
- Tensor structure functions $\rightarrow b_2$, b_3
- Tensor DVCS \rightarrow Test sum rules, new helicity term
- Tensor Drell-Yan \rightarrow 60 new structure functions
- Tensor TMD → Directly measure a T-odd function^[1]
- Tensor EIC \rightarrow Many calculations simplified

...and more!

SPIN 2018

So, How Much Longer?

• Results from UVA are promising, preliminary $P_{zz} > 30\%$ recently achieved on butanol. ND3 in progress.

D Keller, Eur.Phys.J.A., in review (2016) D Keller, PoS, PSTP2015:014 (2016)

D Keller, J.Phys.Conf.Ser., **543**(1):012015 (2014) D Keller, Int.J.Mod.Phys.Conf.Ser., **40**(1):1660105 (2016) • UNH DNP Labs nearing full operation

• Slifer Lab:

- New LHe fridge operational 4/18
- Magnet calibrated 8/18
- Now producing NH3 target material

9/8/2018

SPIN 2018

So, How Much Longer?

• Results from UVA are promising, preliminary $P_{zz} > 30\%$ recently achieved on butanol. ND3 in progress.

D Keller, Eur.Phys.J.A., in review (2016) D Keller, PoS, PSTP2015:014 (2016)

D Keller, J.Phys.Conf.Ser., **543**(1):012015 (2014) D Keller, Int.J.Mod.Phys.Conf.Ser., **40**(1):1660105 (2016) UNH DNP Labs nearing full operation

• Slifer Lab:

- New LHe fridge operational 4/18
- Magnet calibrated 8/18
- Now producing NH3 target material

9/8/2018

SPIN 2018

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

• UNH Long Lab:

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt $-P_{77}$
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach
 - Starting to 3D print tiny scintillators for low-energy scattering/proof of P₇₇

9/8/2018

Durable Resin ;

low friction compa te made from polyr e recuired in a room-

0.1mm

SPIN 2018

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach
 - Starting to 3D print tiny scintillators for low-energy scattering/proof of P_{zz}
- Attempting to 3D print 10 MeV beamline for target material pre-irradiation with <\$4k printer

rial, Durable Resin 5 as low friction compen-/ Le made from polype required in a room-

0.1mm

SPIN 2018

All This in ~ 1 Year So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach
 - Starting to 3D print tiny scintillators for low-energy scattering/proof of P_{zz}
 - Attempting to 3D print 10 MeV beamline for target material pre-irradiation with <\$4k printer

Elena Long <elena.long@ur

0.1mm

9/8/2018

SPIN 2018

Where We Are and Where We're Going

9/8/2018

SPIN 2018

9/8/2018

SPIN 2018

R. Williams UG (Long Lab)

<image>

J. Yost

(Slifer Lab)

UG

Elena Long <elena.long@unh.edu>

M. McClellan Ph.D. Student (Long Lab) D. Ruth Ph.D. Stude (Slifer Lab)

D. Ruth Ph.D. Student (Slifer Lab) L. Kurbany MA Student (Long Lab)

> N. Santiesteban Ph.D. Student (Slifer Lab)

Thank you!

SPIN 2018