Tensor Polarization: A New Window into Nuclear Structure

Dr. Elena Long

SPIN 2018

University of Ferrara

September 8th, 2018

NUniversity of New Hampshire

SPIN 2018

Where Do We Go From Here?

New Degree of Freedom: Tensor Polarization

"The proton, **deuteron**, and α particle are most interesting to study because they are among the simplest nuclear structures."

RW McAllister, R Hofstadter, Phys.Rev. 102 851 (1956)

LONG RANGE PLAN NUCLEAR SCIENCE

"A tensor-polarized deuteron

target ... is under development

to measure spin structure in a spin-1 nucleus in Hall Cat JLab.

9/8/2018

SPIN 2018

Shout out to Eva Weiner, Mother of Modern Nuclear Physics Targets. She built Hofstadter's Nobel Prize winning target but tragically died in a 1953 car crash.

Where Do We Go From Here?

New Degree of Freedom: Tensor Polarization

"The proton, **deuteron**, and α particle are most interesting to study because they are among the simplest nuclear structures."

RW McAllister, R Hofstadter, Phys.Rev. **102** 851 (1956)

9/8/2018

SPIN 2018

"Normal" Polarization: Vector $P_z = p_+ - p_-$

"Normal" Polarization: Vector $P_z = p_+ - p_-$

(*****+*****)-2*****

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

A high-luminosity tensorpolarized target has promise as a **novel probe of nuclear physics**

What is Tensor Polarization?

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

Current Landscape of Tensor Observables

9/8/2018

SPIN 2018

Current Landscape of Tensor Observables

9/8/2018

SPIN 2018

Elastic T_{20}

Elastic T_{20}

 T_{20} , along with unpol. A & B form factors, -⁸ gave rise to current deuteron understanding

 $T_{20} = \frac{A_{zz}}{d_{20}\sqrt{2}} \text{ on elastic peak} \qquad d_{20} = \frac{3\cos^2\theta^* - 1}{2}$

- At low Q^2 :
- T_{20} well known
- P_{zz} can be extracted from T_{20}
- Completely independent P_{zz} measurement from NMR line-shape P_{zz}

J Forest, et al, PRC 54 646 (1996)

SPIN 2018

Elastic T_{20}

 T_{20} , along with <u>unpol</u>. A & B form factors, gave rise to current deuteron understanding

 $T_{20} = \frac{A_{ZZ}}{d_{20}\sqrt{2}} \text{ on elastic peak} \qquad d_{20} = \frac{3\cos^2\theta^* - 1}{2}$

- At low Q^2 :
- T_{20} well known
- P_{zz} can be extracted from T_{20}
- $\circ~$ Completely independent P_{zz} measurement from NMR line-shape P_{zz}

JLab E12-15-005 will measure $T_{\rm 20}$ over the largest & highest Q^2 range

 \circ Important cross-check of Hall C high Q^2 data

World Data from R Holt, R Gilman, Rept.Prog.Phys. 75 086301 (2012)

J Forest, et al, PRC 54 646 (1996)

9/8/2018

SPIN 2018

Current Landscape of Tensor Observables

Structure Functions

Scattering on:

Unpolarized Targets

$$W_{\mu\nu} = -\alpha F_1 + \beta F_2$$

Existence of quarks & quark spin!

e

e'

SPIN 2018

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

0.012 All conventional models 0.01 predict small or vanishing 0.008 Sargsian (lc) Sargsian (vn) values of b_1 0.006 Miller (One π Exch.) 0.004 0.002 9 -0.002-0.004-0.006 -0.008-0.01 -0.012 0.2 0.3 0.5 0.1 0.4 0.6 0 A Airapetian, et al, PRL 95 242001 (2005) X K Slifer, et al, JLab C12-13-011

9/8/2018

SPIN 2018

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!
- $^{\rm o}$ Any measurement of $b_1 < 0$ indicates exotic physics

SPIN 2018

 b_1 probes nuclear effects at quark resolution!

SPIN 2018

Elena Long <elena.long@unh.edu>

 b_1 probes nuclear effects at quark resolution! $b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{q^0(x) - q^{\pm 1}(x)}$

Pionic Effects

HERMES

0.012

0.01

All conventional models
 predict small or vanishing
 values of b₁

 HERMES found something very different!

 $^{\rm o}$ Any measurement of $b_1 < 0$ indicates exotic physics

• Miller b16q at $Q^2 = 1.17 \text{ GeV}^2$ 0.008 - Miller b16q at $Q^2 = 1.76 \text{ GeV}^2$ 0.006 - Miller b16q at $Q^2 = 2.12 \text{ GeV}^2$ - Miller b16q at $Q^2 = 3.25 \text{ GeV}^2$ 0.004 Kumano 0.002 -0.002-0.004-0.006 Predictions using 6q Hidden Color -0.008 -0.01 -0.012 0.2 0.3 0.1 0.4 0.5 0.6 0 X G Miller, PRC 89 045203 (2014) S Kumano, PRD 82 017501 (2010)

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

$$b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$$

Projected

Tensor Structure Function, b_1

- All conventional models
 predict small or vanishing
 values of b₁
 - HERMES found something very different!
- JLab HERMES 0.01 Miller b16q E12-13-01 0.008 Sargsian (lc) Sargsian (vn) 0.006 Kumano (With δ_{τ} qbar) 0.004 Kumano (No δ_{T} qbar) Miller (One π Exch.) **a**^{0.002} 0 -0.002-0.004-0.006 0.2 0.3 0.1 0.6 0 0.4 0.5 X
- Any measurement of $b_1 < 0$ indicates exotic physics + In

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011 + Insight in Close-Kumano Sum Rule & Quark Orbital Angular Momentum ^{S Kumano, PRD} **82** 017501 (2010)

0.012

FE Close, S Kumano, PRD **42** 2377 (1990) SK Taneja *et al*, PRD **86** 036008 (2012) G Miller, PRC **89** 045203 (2014)

9/8/2018

SPIN 2018

Current Landscape of Tensor Observables

Current Landscape of Tensor Observables

SPIN 2018

SPIN 2018

- x > 1 kinematics
- Enhancing tensor polarization

We combine both techniques

- x > 1 kinematics
- Enhancing tensor polarization

We combine both techniques

Deuteron Wavefunction

LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981)

SPIN 2018

Deuteron Wavefunction

LL Frankfurt, MI Strikman, Phys. Rept. **76** 215 (1981)

9/8/2018

SPIN 2018

Deuteron Wavefunction

 $E_{a} = 8.8 \text{ GeV}, Q^{2} = 1.5 \text{ GeV}^{2}$ First calculated in the '70s, A_{zz} can be used in to **V**^R 0.2 discriminate between hard and soft wave functions **AV18** $A_{ZZ} = \frac{2}{f \cdot P_{ZZ}} \left(\frac{\sigma_p - \sigma_u}{\sigma_u} \right)$ 0% 0 -0.2 In the impulse approximation, A_{zz} is directly related to the -0.4 S- and D-states $S \rightarrow u(k)$ $D \rightarrow w(k)$ -0.6 $\propto \frac{\frac{1}{2}w^{2}(k) - u(k)w(k)\sqrt{2}}{u^{2}(k) + w^{2}(k)}$ -0.8 A_{zz} -1 -100% CDBonn -1.2 Modern calculations indicate a large separation of hard and soft WFs begins just above the quasi-elastic peak at x > 1.3-1.4 0.40.6 0.8 1.2 1.4 1.6 1.8 LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981) M Sargsian

9/8/2018

SPIN 2018

Deuteron Wavefunction

 $E_{a} = 8.8 \text{ GeV}, Q^{2} = 1.5 \text{ GeV}^{2}$ First calculated in the '70s, A_{zz} can be used in to **V**^R 0.2 discriminate between hard and soft wave functions **AV18** $A_{ZZ} = \frac{2}{f \cdot P_{ZZ}} \left(\frac{\sigma_p - \sigma_u}{\sigma_u} \right)$ 0 0% -0.2 ~60% In the impulse approximation, A_{zz} is directly related to the -0.4 S- and D-states $S \rightarrow u(k)$ $D \rightarrow w(k)$ -0.6 $\propto \frac{\frac{1}{2}w^{2}(k) - u(k)w(k)\sqrt{2}}{u^{2}(k) + w^{2}(k)}$ -0.8 A_{zz} -1 -100% CDBonn -1.2 Modern calculations indicate a large separation of hard and soft WFs begins just above the quasi-elastic peak at x > 1.3-1.4 0.40.6 0.8 1.2 1.4 1.6 1.8 LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981) M Sargsian

9/8/2018

SPIN 2018

Deuteron Wavefunction

Elena Long <elena.long@unh.edu>

Deuteron Wavefunction

SPIN 2018

9/8/2018

9

Relativistic NN Bound System

Unpolarized

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

M Sargsian, Tensor Spin Observables Workshop (2014)

SPIN 2018

Relativistic NN Bound System

Tensor Polarized

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

With tensor A_{zz} , significant difference at much lower p > 300 MeV/c and x > 1.1

M Sargsian, Tensor Spin Observables Workshop (2014)

SPIN 2018

Relativistic NN Bound System

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

With tensor A_{zz} , significant difference at much lower p > 300 MeV/c and x > 1.1

M Sargsian, Tensor Spin Observables Workshop (2014)

SPIN 2018

No current quasi-elastic tensor measurements

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

9/8/2018

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

9/8/2018

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

Decades of theoretical interest that **we can only now probe** with a high-luminosity tensorpolarized target

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

Decades of theoretical interest that **we can only now probe** with a high-luminosity tensorpolarized target

Importance ranges from understanding shortrange correlations to the equations of state of neutron stars

9/8/2018

J. Phys.: Conf. Ser. 543 011001-012015 (2014) http://iopscience.iop.org/1742-6596/543/1 ^[1] A. Bacchetta, Ph.D. Thesis (2002) arXiv:0212025

And That's Just the Beginning!

Growing tensor program:

- DIS *b*₁: <u>Approved</u> (C12-13-011)
- QE and Elastic A_{zz} : <u>Approved</u> (C12-15-005)
- Exotic gluon states through Δ (LOI12-16-006)

Physics accessible with a tensor polarized target:

- Orbital Angular Momentum & Spin Crisis
- Gravitomagnetic Form Factors
- Pionic Effects
- Polarized Sea Quarks
- Tensor polarized antiquarks
- Linking traditional nuclear physics and quark-gluon picture
- Final State Interactions
- Gluonic Effects
- Tensor structure functions $\rightarrow b_2$, b_3
- Tensor DVCS \rightarrow Test sum rules, new helicity term
- Tensor Drell-Yan \rightarrow 60 new structure functions
- Tensor TMD → Directly measure a T-odd function^[1]
- Tensor EIC \rightarrow Many calculations simplified

...and more!

SPIN 2018

So, How Much Longer?

• Results from UVA are promising, preliminary $P_{zz} > 30\%$ recently achieved on butanol. ND3 in progress.

D Keller, Eur.Phys.J.A., in review (2016) D Keller, PoS, PSTP2015:014 (2016)

D Keller, J.Phys.Conf.Ser., **543**(1):012015 (2014) D Keller, Int.J.Mod.Phys.Conf.Ser., **40**(1):1660105 (2016) • UNH DNP Labs nearing full operation

• Slifer Lab:

- New LHe fridge operational 4/18
- Magnet calibrated 8/18
- Now producing NH3 target material

9/8/2018

SPIN 2018

So, How Much Longer?

• Results from UVA are promising, preliminary $P_{zz} > 30\%$ recently achieved on butanol. ND3 in progress.

D Keller, Eur.Phys.J.A., in review (2016) D Keller, PoS, PSTP2015:014 (2016)

D Keller, J.Phys.Conf.Ser., **543**(1):012015 (2014) D Keller, Int.J.Mod.Phys.Conf.Ser., **40**(1):1660105 (2016) UNH DNP Labs nearing full operation

• Slifer Lab:

- New LHe fridge operational 4/18
- Magnet calibrated 8/18
- Now producing NH3 target material

9/8/2018

SPIN 2018

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

• UNH Long Lab:

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt $-P_{77}$
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach
 - Starting to 3D print tiny scintillators for low-energy scattering/proof of P₇₇

9/8/2018

Durable Resin ;

low friction compa te made from polyr e recuired in a room-

0.1mm

SPIN 2018

nuclear.unh.edu/~elong Long Lab

So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach
 - Starting to 3D print tiny scintillators for low-energy scattering/proof of P_{zz}
- Attempting to 3D print 10 MeV beamline for target material pre-irradiation with <\$4k printer

rial, Durable Resin 5 as low friction compen-/ Le made from polype required in a room-

0.1mm

SPIN 2018

All This in ~ 1 Year So, How Much Longer?

- UNH Long Lab:
 - 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
 - New solid-state mm-wave system nearly complete, capable of multiple frequencies to attempt –P_{zz}
 - Regularly printing with FEP, first 3D printed Kel-F target cup on Aug. 30
 - Debugging NMR systems with novel 0.8 T Halbach
 - Starting to 3D print tiny scintillators for low-energy scattering/proof of P_{zz}
 - Attempting to 3D print 10 MeV beamline for target material pre-irradiation with <\$4k printer

Elena Long <elena.long@ur

0.1mm

9/8/2018

SPIN 2018

Where We Are and Where We're Going

9/8/2018

SPIN 2018

9/8/2018

SPIN 2018

R. Williams UG (Long Lab)

<image>

J. Yost

(Slifer Lab)

UG

Elena Long <elena.long@unh.edu>

M. McClellan Ph.D. Student (Long Lab) D. Ruth Ph.D. Stude (Slifer Lab)

D. Ruth Ph.D. Student (Slifer Lab) L. Kurbany MA Student (Long Lab)

> N. Santiesteban Ph.D. Student (Slifer Lab)

Thank you!

SPIN 2018

Backup Slides

SPIN 2018

A_{zz} and T_{20}

C12-15-005: Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

C1-Approved, A- Physics Rating

Spokespeople:

E. Long*, K. Slifer, P. Solvignon, D. Day, D. Keller,

D. Higinbotham

Elena Long <elena.long@unh.edu>

Final State Interactions

SPIN 2018

FSI must be understood & minimized to get *NN* potential information

Minimum/maximum FSI on A_{zz} calculated by W. Cosyn^[1]

FSIs minimized in kinematic choice (large $x \ge 1.35$ and medium p_m)

 Best suited for attempting to extract information on *D*-wave content^[2]

9/8/2018

65

9/8/2018

SPIN 2018

Elena Long <elena.long@unh.edu>

66

E Long, et al, JLab C12-15-005

9/8/2018

SPIN 2018

SPIN 2018

Relativistic Model Discrimination >60

E Long, et al, JLab C12-15-005

9/8/2018

Relativistic Model Discrimination >60

E Long, et al, JLab C12-15-005

9/8/2018

SPIN 2018

Elena Long <elena.long@unh.edu>

71

72

SPIN 2018

9/8/2018
b_1

C12-13-011: The Deuteron Tensor Structure Function b_1

C1-Approved, A- Physics Rating

Spokespeople:

K. Slifer*, O.R. Aramayo, J.P. Chen, N. Kalatarians, D. Keller, E. Long, P. Solvignon

Sea Quark Polarization

S Kumano, PRD 82 017501 (2010)

SPIN 2018

Deuteron wave function can be expressed as

•
$$|6q\rangle = \sqrt{\frac{1}{9}} |NN\rangle + \sqrt{\frac{4}{45}} |\Delta\Delta\rangle + \sqrt{\frac{4}{5}} |CC\rangle$$

Nucleon-
Nucleon-
Nucleon

 Early hidden color calculations gave small results, but author noted "as experimental techniques have improved dramatically, the meaning of small has changed."

• Even though experimental upper limit of $P_{6q} < 1.5\%$, a much smaller value (0.15%) can have a significant effect on b_1

G Miller, PRC 89 045203 (2014)

6-quark, hidden
 color states predict
 large negative b₁ at
 large x

Using central values
 R=1.2 fm,
 m=338 MeV

G Miller, PRC 89 045203 (2014)

Pionic effects alone
 would violate Close Kumano Sum Rule

G Miller, PRC 89 045203 (2014)

Orbital Angular Momentum and GPDs

Deuteron angular momentum dominated by the GPD ${\cal H}$

 $J_q = \frac{1}{2} \int dx x H_2^q(x, 0, 0)$

- (Future tensor-polarized DVCS experiment (A_{UT}) would be ideal test)
- Sum rule can calculate normal nuclear effects with high precision, Important for giving $H_2 \approx H + E$ Spin Crisis!
- Any measured deviation sheds light on elusive gluon angular momentum

 $b_1 = H_5(x, 0, 0)$ needed to test assumptions in sum rule^[1]

• Relates to gravitomagnetic form factors^[2]

$$\circ \int dx x H_5(x,\xi,t) = -\frac{t}{8M_D^2} \mathcal{G}_6(t) + \frac{1}{2} \mathcal{G}_7(t)$$

^[1] SK Taneja, *et al*, PRD **86** 036008 (2012) ^[2] OV Teryaev, Front.Phys. **11** 111027 (2016)

 \circ Identical equipment to A_{zz}

Det.	x	Q ² (GeV ²)	<i>W</i> (GeV)	<i>E_e,</i> (GeV)	$ heta_e$, (deg)	Rate (kHz)	Time (Day)
SHMS	0.15	1.21	2.78	6.70	7.4	1.66	6
SHMS	0.30	2.00	2.36	7.45	9.0	0.79	9
SHMS	0.45	2.58	2.0	7.96	9.9	0.38	15
HMS	0.55	3.81	2.0	7.31	12.5	0.11	30

9/8/2018

SPIN 2018

Tensor Structure Function, b_1

Measure anomalous HERMES point with much higher precision & tighter Q^2 range

Map out zero-crossing

Gain insight into:

- Close-Kumano sum rule^[1]
- 6-quark hidden color^[2]
- OAM and spin crisis^[3]
- Pionic effects^[2,4]
- Polarized sea quarks^[4]

Approved JLab Experiment C12-13-011

 Spokespersons: K. Slifer, E. Long, D. Keller, P. Solvignon, J.P. Chen, O.R. Aramayo, N. Kalantarians

^[1] FE Close, S Kumano, Phys. Rev. **D42**, 2377 (1990)
 ^[2] G Miller, Phys. Rev. **C89**, 045203 (2014)

^[3] SK Taneja *et al*, Phys. Rev. **D86**, 036008 (2012)
 ^[4] S Kumano, Phys. Rev. **D82**, 017501 (2010)

9/8/2018

SPIN 2018

Δ (or b_4)

LOI12-16-006: Search for Exotic Gluonic States in the Nucleus

Authors:

J. Maxwell*, W. Detmold, R. Jaffe, R. Milner, D. Crabb, D. Day, D. Keller, O.A. Rondon, M. Jones, C. Keith, J. Pierce

Tensor Structure Function, b_4 (or Δ)

- Hadronic double helicity flip structure function, $\Delta(x, Q^2) = b_4$
- Unpolarized beam on transversely-aligned target
- Insensitive to bound nucleons or pions
- Any non-zero value indicates exotic gluonic components
- New lattice QCD result for first moment of Δ(x, Q2) in a φ meson is preliminary, but very promising (arXiv:1606.04505)
- Encouraged for full proposal submission, updated LOI submitted

R Jaffe, A Manohar, Phys. Lett. B 223,218 (1989)

83

JLab Tensor Program (So far...)

9/8/2018

SPIN 2018

Tensor Polarized Target

SPIN 2018

Tensor Polarization Techniques

Unpolarized Target + Polarimeter

- D₂O waterfall^[1]
- Liquid D₂^[2]
- Medium-high luminosity, no polarization enhancement
- Gas Jet/Storage Cell Target^[3]
 - Low luminosity, very high tensor polarization

• Solid Polarized DNP Target^[4]

 High luminosity, polarization enhancement, large dilution at high x

^[1] ME Schulze, *et al*, PRL **52** 597 (1984)
 ^[2] D Abbot, *et al*, PRL **84** 5053 (2000)

^[3] AV Evstugneev, et al, NIM A 238 12 (1985)
 ^[4] B Boden, et al, Z. Phys. C 49 175 (1991)

9/8/2018

- Traditionally, Nucl. Phys. Uses EIO tubes & rectangular waveguides (WR) for mmWave
- Rectangular Waveguide Disadvantages:
 - Transmit only fundamental frequency
 - One frequency range = One **B**-field (± ~1 T)
 - High loss (~8 dB/m)
 - Very significant with EIO, as EIO affected by fringe fields and must be ~few meters away from target
 - 20 W EIO \rightarrow 0.01 W on target from losses (pre-horn)
 - Conductive metal from source to horn
 - \rightarrow Higher heat transfer
 - $\circ \rightarrow$ Wasted LHe

9/8/2018

SPIN 2018

Elena Long <elena.long@unh.edu>

88

SPIN 2018

9/8/2018

- Replace rectangular with corrugated waveguides
- Corrugated Waveguide Advantages:
 - Over modal, 2+ frequency ranges / set
 - Extremely low loss (~0.01 dB/m)
 - Same power on target w/ far lower power mmW source
 - 0.5 W source \rightarrow 0.498 W on target (pre-horn)
 - \circ Can put gaps ($\approx d$) in guides with minimal loss
 - \rightarrow Nearly zero heat transfer

SPIN 2018

9/8/2018

- Traditionally, Nucl. Phys. Uses EIO tubes & rectangular waveguides (WR) for mmWave
- EIO Disadvantages:
 - Need to replace for any significantly higher fields (\$\$\$)

$$\circ \uparrow B \rightarrow \uparrow P_{ZZ}$$

$$\circ \uparrow B \rightarrow \uparrow f$$

$$\circ \uparrow B \rightarrow \downarrow P$$

- $\uparrow B \rightarrow \uparrow$ \$200k per B
- Affected by fringe fields, must be far from target
 - Requires more waveguides (\$)
- Current UNH DNP mmWave system not complete
- Limited lifetime ~few thousand hours

¹H DNP with SS mmWave TA Siaw, et al, J.Mag.Res. 264 131 (2016)

> - 4 K 6 K

60

MW power (mW)

20 K ← 90 K

80

(a)

120

100

SPIN 2018

9/8/2018

- Nor • Replace EIO with Solid State mmWaves
- Advantages:

20

40

- Bring medical DNP back to nuclear physics for P_{zz} !
- Not affected by magnetic fields
 - Sits close to magnet, reducing losses and costs

nt (a.u.) 0.8

0.6

0.4

0.0

- 3-5x less expensive than EIO set-up
 - Multiple field tests become feasible
- Can use with frequency doublers and triplers
- >10x longer lifetime
- Technology continues advancing rapidly

- Traditional Nuclear Physics uses
 Q Meter for CW NMR
- Disadvantages:
 - Discontinued manufacturing
 - Newest Livermore models from the '90s
 - Difficult to tune/repair
 - Slight frequency/field drifts completely ruin calibration
 - Wasted helium from recalibrating
 - Built for an analog age

9/8/2018

SPIN 2018

- Replace Q Meter
 with Pulse NMR + EPR
- Advantages:
 - Proven technology in medical DNP
 - EPR calibration decreases tuning time
 - Saves liquid helium
 - Actively developed & supported
 - Near off-the-shelf running
 - Built for the digital age
 - More time doing physics, less time struggling with NMR

9/8/2018

Tensor Polarization with DNP

9/8/2018

Tensor Polarization with DNP

9/8/2018

Tensor Polarization with DNP

9/8/2018

More than 10x less sensitive to systematics than b_1

Systematics

Source	A_{zz} Systematic	T_{20} Systematic
Polarization	3.0 - 6.0%	3.0 - 6.0%
Dilution factor	6.0%	2.5%
Packing fraction	3.0%	3.0%
Trigger/Tracking Eff.	1.0%	1.0%
Acceptance	0.5%	0.5%
Charge Determination	1.0%	1.0%
Detector resolution and efficiency	1.0%	1.0%
Total	7.6 - 9.2%	5.2 - 7.4%

Overhead

Overhead	Number	Time Per (hr)	(hr)	
Polarization/depolarization	38	2.0	76.0	
Target anneal	15	4.0	60.0	
Target T.E. measurement	6	4.0	24.0	
Target material change	4	4.0	16.0	
Packing Fraction/Dilution runs	20	1.0	20.0	
BCM calibration	9	2.0	18.0	
Optics	3	4.0	12.0	
Linac change	2	8.0	16.0	
Momentum/angle change	3	2.0	6.0	
		10.3 days		

Tensor Polarization Measurement

Vector optimize with microwaves

Fit peaks with convolution

Tensor optimize with RF

Measure change in peaks using Riemann Sum segments

9/8/2018

SPIN 2018

Assumptions:

$$P_{zz} = 30\%$$
N. Sargsian, Private Communication

$$P_{fz} = 30\%$$
N. Sorgsian, Private Communication

$$P_{fz} = 30\%$$
N. Sorgsian, Private Communication
N. Fomin, et al., Phys. Rev. Lett. 108 (2012) 092502

$$R_{Pol} = \mathcal{A} \left[\mathcal{L}_{He} \sigma_{He}^{u} + \mathcal{L}_{N} \sigma_{N}^{u} + \mathcal{L}_{D} \sigma_{D}^{u} \left(1 + \frac{1}{2} P_{zz} A_{zz} \right) \right]$$

$$R_{Unpol} = \mathcal{A} \left[\mathcal{L}_{He} \sigma_{He}^{u} + \mathcal{L}_{N} \sigma_{N}^{u} + \mathcal{L}_{D} \sigma_{D}^{u} \left(1 + \frac{1}{2} P_{zz} A_{zz} \right) \right]$$

$$N = Rt$$

$$A_{zz} = \frac{2}{f_{dil}P_{zz}} \left(\frac{N_{Pol}}{N_{Unpol}} - 1 \right)$$

$$\delta A_{zz}^{stat} = \frac{2}{f_{dil}P_{zz}} \sqrt{\left(\frac{1}{N_{Unpol}} \sqrt{N_{Pol}} \right)^{2} + \left(\frac{N_{Pol}}{N_{Unpol}^{2}} \sqrt{N_{Unpol}} \right)^{2}}$$

$$Outhorse in the state interval of the st$$

E. Long, Technical Note, JLAB-TN-13-029

Dilution Factor

"...the background from interaction with nuclei increases as $\alpha(x)$ increases. For example, for a D¹²C target the ratio of the cross sections σ_A for A=¹²C and A=D is of the order of 40 for $x \sim 1.3$ and increases with x."

- L.L. Frankfurt, M.I. Strikman, Phys. Rept. **160** (1988) 235

$$f_{dil} = \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}}{\mathcal{L}_{\mathrm{N}}\sigma_{\mathrm{N}} + \mathcal{L}_{\mathrm{He}}\sigma_{\mathrm{He}} + \mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}} + \sum \mathcal{L}_{\mathrm{A}}\sigma_{\mathrm{A}}}$$

With the 12 GeV upgrade and the new SHMS, this measurement becomes possible even with the low dilution factor at high x

Elastic Tensor Observables

Number of Year and Q (GeV) Experiment Observables Type points reference Bates Polarimeter 0.34, 0.40 2 1984 [56] t_{20} Novosibirsk VEPP-2 Atomic beam 0.17, 0.23 T_{20} 2 1985 [57, 58] Novosibirsk VEPP-3 Storage cell 0.49, 0.58 T_{20} 2 1990 [59] Bonn Polarized target 0.71 T_{20} 1991 [60] Bates Polarimeter 0.75 - 0.913 1991 [61, 62] t_{20}, t_{21}, t_{22} Novosibirsk VEPP-3 Storage cell 0.71 T_{20} 1994 [63] T_{20}, T_{22} NIKHEF Storage cell 0.31 1996 [64] NIKHEF Storage cell 0.40 - 0.551999 [65] T_{20} 3 JLab Hall C 94-018 Polarimeter 0.81 - 1.316 2000 [4] t_{20}, t_{21}, t_{22} Novosibirsk VEPP-3 Storage cell 0.63-0.77 5 2001 [66] T_{20} VEPP-3 1.65-4.26 2003 Internal gas T_{20}, T_{21} 6 Internal gas 0.42-0.89 T_{20}, T_{21} 9 2011 Bates

Table 4. World data for tensor polarization observables.

R Gilman, F Gross, J. Phys. G 28 R37 (2002)

9/8/2018

SPIN 2018

Elastic Tensor Observables

9/8/2018

Diluting Asymmetries

 $\sigma(h, P_1^d, P_2^d) = \sigma_0 [1 + P_1^d \alpha_d^V + P_2^d \alpha_d^T + h(P_1^d \alpha_{ed}^V + P_2^d \alpha_{ed}^T)]$ With an unpolarized beam and a longitudinally polarized target, $\sigma(h, P_1^d, P_2^d) = \sigma_0 [1 + P_1^d \alpha_d^V + P_2^d \alpha_d^T + h(P_1^d \alpha_{ed}^V + P_2^d \alpha_{ed}^T)]$ • h = 0• $\phi_d = 0$ $\alpha_d^V(\theta_d, \phi_d) = \frac{1}{2P_1^d \sigma_0} [\sigma(0, P_1^d, P_2^d) - \sigma(0, -P_1^d, P_2^d)]$ • $\sin \phi_d = 0$ ORIENTATION PLANE $= \frac{6c}{\sigma_0} \rho_{LT} F_{LT}^{1-1} \sin \phi_d d_{-10}^1(\theta_d) ,$ e'_{k_2} -Knp $\alpha_{ed}^{T}(\theta_{d},\phi_{d}) = \frac{1}{4hP_{2}^{d}\sigma_{0}} [\sigma(h,P_{1}^{d},P_{2}^{d}) - \sigma(-h,P_{1}^{d},P_{2}^{d}) + \sigma(h,-P_{1}^{d},P_{2}^{d}) - \sigma(-h,-P_{1}^{d},P_{2}^{d})]$ Θ $= \frac{6c}{\sigma_0} \rho'_{LT} F'^{2-1}_{LT} \sin \phi_d d^2_{-10}(\theta_d) \; .$ SCATTERING PLANE $\sigma = \sigma_0 \left[1 + P_2^d \alpha_d^T \right] = \sigma_0 \left[1 + P_{zz} A_{zz} \right]$ REACTION PLANE W Leidemann, et al, PRC 43, 1022 (1991)

9/8/2018

Polarization Cycle

Each polarization cycle is an independent measurement of A_{zz}

- Annealing and target motion only at the start of a new cycle
- Any issues from annealing or material shifts will be isolated to a single cycle
 - Dilution/packing fraction runs at the beginning and end of each cycle can recover data surrounding a material shift event
- $\,\circ\,$ Doubled the number of cycles for the lowest Q^2 measurement

107