Pion-induced Drell-Yan scattering at

Caroline Riedl (University of Illinois at Urbana-Champaign) **on behalf of the COMPASS Collaboration**

September 13, 2018

Special thanks to Vincent Andrieux, Riccardo Longo, Marco Meyer, Evgenii Mitrofanov, Charles Naim, Bakur Parsamyan, Catarina Quintans

8 TMD(PDF)s needed at leading twist description.

Fragmentation functions (not shown here) are denoted by capital symbols.

Flavor indices and kinematic dependences skipped for simplicity.

Spin-dependent Drell-Yan measurement at COMPASS

COMPASS pion-induced Drell-Yan

0.05 $Q^2=25 \text{ GeV}^2$ 0.04 $x\Delta^{N} f_{u}^{(1)}(x)$ 0.03 u-quark **Sivers** 0.02 function [*] 0.01 0 0.2 0.6 0.4 0.8 0 1 [*] calculated from: M. Anselmino et al., EPJ A39 (2009) 89.

 $\sigma^{\mathrm{DY}} \propto f_{\overline{u}|\pi} \otimes f_{u|p}$

 $\pi^- p^\uparrow \to \mu^+ \mu^- X$

COMPASS DY / SIDIS data

4

COMPASS @

CÉRN

COMPASS target

COMPASS polarized target 2015, 2018 (NH₃); ammonia beads immersed into liquid helium; dilution factor ~ 0.22

hadron absorber

W target

(beam plug)

muon pairs

(µ+µ-)

Al target

NH₃

COMPASS Drell-Yan setup 2015 & 2018

- 190 GeV negatively charged pion beam.
- Transversely polarized NH₃ target, $\langle P_T \rangle = 73\%$ (2015).
- Hadron absorber with nuclear targets integrated (Al, W).

		1	$M_{\mu\mu}$ (G	eV/c^2)	
Mμμ [GeV]	<2	2-2.5	2.5-	-4.3	4.3-8.5
$Q^2 [GeV^2]$	1-4	4-6.25	6.25	5-19	19-72
Region	"DY low mass"	"DY medium mass"	"DY J/ ψ"	"J/ψ"	"DY high mass"
clean?	×× >50% bg	*	××	××	<4% bg
large DY x-section?	~ ~	>	~	-	*
large Sivers?	×	×	×	-	~

Drell Yan @ COMPASS - C. Riedl (UIUC), on behalf of COMPASS

Mμμ [GeV]	<2	2-2.5	2.5	-4.3	4.3-8.5
$Q^2 [GeV^2]$	1-4	4-6.25	6.25	5-19	19-72
Region	"DY low mass"	"DY medium mass"	"DY J/ ψ"	"J/ψ"	"DY high mass"
clean?	×× >50% bg	×	××	xx	✓ ✓ <4% bg
large DY x-section?	~ ~	✓	~	-	×
large Sivers?	×	×	×	-	✓

Mμμ [GeV]	<2	2-2.5	2.5-	-4.3	4.3-8.5
$Q^2 [GeV^2]$	1-4	4-6.25	6.25	5-19	19-72
Region	"DY low mass"	"DY medium mass"	"DY J/ ψ"	"J/ψ"	"DY high mass"
clean?	×× >50% bg	×	××	xx	<4% bg
large DY x-section?	~ ~	~	~	-	×
large Sivers?	×	×	×	-	✓

Mμμ [GeV]	<2	2-2.5	2-2.5 2.5-4.3		4.3-8.5
$Q^2 [GeV^2]$	1-4	4-6.25	6.25	5-19	19-72
Region	"DY low mass"	"DY medium mass"	"DY J/ ψ"	"J/ψ"	"DY high mass"
clean?	×× >50% bg	×	××	xx	<4% bg
large DY x-section?	~ ~	~	~	-	×
large Sivers?	×	×	×	-	~

Mμμ [GeV]	<2	2-2.5	2.5	-4.3	4.3-8.5
$Q^2 [GeV^2]$	1-4	4-6.25	6.25	5-19	19-72
Region	"DY low mass"	"DY medium mass"	"DY J/ ψ"	"J/ψ"	"DY high mass"
clean?	×× >50% bg	×	××	xx	<4% bg
large DY x-section?	~ ~	✓	~	-	×
large Sivers?	×	×	×	-	✓

Drell Yan @ COMPASS - C. Riedl (UIUC), on behalf of COMPASS

SPIN 2018, Ferrara - September 13, 2018

COMPASS Drell-Yan spin-dependent asymmetry amplitudes

scale uncertainty due to target polarization (5%) & target dilution factor (8%) not shown.

COMPASS Drell-Yan vs. SIDIS: spin-dependent asymmetry amplitudes

COMPASS Sivers Drell-Yan result 2015

"DGLAP" M. Anselmino, M. Boglione, U. D'Alesio, F. Murgia, and A. Prokudin, J. High Energy Phys. 04 (2017) 046. "TMD 1" M. G. Echevarria, A. Idilbi, Z.-B. Kang, and I. Vitev, Phys. Rev. D 89, 074013 (2014). "TMD 2" P. Sun and F. Yuan, Phys. Rev. D 88, 114012 (2013).

Weighted transverse spin asymmetries in 2015 COMPASS Drell-Yan data:

Se Jan Matousek, Monday TMD 15:20

- Direct measurement of TMD $k_{T}^{2}\ moments$
- Products instead of convolutions of TMDs

More COMPASS DY results to come

- Unpolarized Drell-Yan angular distributions from π on NH₃.
- Absolute Drell-Yan cross-sections of pion collisions on NH₃ and W targets.
- Nuclear effects from the ratio of Drell-Yan on W to NH₃.

Spin-averaged Drell-Yan cross section

COMPASS results to come

Angular dependence of the Drell-Yan cross section

COMPASS results to come

$$d\sigma(\pi^{-}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X \sim 1 + \overline{h_{1}^{\perp}} \otimes \overline{h_{1}^{\perp}} \cos(2\phi) \qquad \text{(BM)} \otimes (\text{BM}) \\ + |S_{T}| \quad \overline{f_{1}} \otimes \overline{f_{1T}^{\perp}} \sin \phi_{S} \qquad \text{(f_{1})} \otimes (\text{Sivers}) \\ + |S_{T}| \quad \overline{h_{1}^{\perp}} \otimes \overline{h_{1T}^{\perp}} \sin(2\phi + \phi_{S}) \quad \text{(BM)} \otimes (\text{Pretzelosity}) \\ + |S_{T}| \quad \overline{h_{1}^{\perp}} \otimes h_{1} \sin(2\phi - \phi_{S}) \quad \text{(BM)} \otimes (\text{Transversity})$$

 Φ_S : angle related to direction of target spin Φ , θ : angles in Collins-Soper frame

$$1 - \lambda = 2\nu$$

Lam-Tung relation

C.S. Lam and W.K. Tung, PRD 18 (1978) 2447

- If intrinsic transverse motion & QCD radiative effects: $\lambda \neq 1$, $\mu \neq 0$, $\nu \neq 0$
- Collider [CMS PLB 750 (2015)] and pion-induced DY [NA10 Z.Phys.C 31, 513 (1986)] violation of Lam-Tung relations
- NNLO QCD corrections can explain these findings [M. Vogelsang, M. Lambertsen, Phys.Rev.D93 (2016)].

Angular dependence of the Drell-Yan cross section

COMPASS results to come

 Φ_{S} : angle related to direction of target spin Φ , θ : angles in Collins-Soper frame

$$1 - \lambda = 2\nu$$

Lam-Tung relation

C.S. Lam and W.K. Tung, PRD 18 (1978) 2447

- If intrinsic transverse motion & QCD radiative effects: $\lambda \neq 1$, $\mu \neq 0$, $\nu \neq 0$
- Collider [CMS PLB 750 (2015)] and pion-induced DY [NA10 Z.Phys.C 31, 513 (1986)] violation of Lam-Tung relations
- NNLO QCD corrections can explain these findings [M. Vogelsang, M. Lambertsen, Phys.Rev.D93 (2016)].

Angular dependence of the Drell-Yan cross section

$$d\sigma(\pi^{-}p^{\uparrow} \to \mu^{+}\mu^{-}X \sim 1 + \overline{h_{1}^{\perp}} \otimes \overline{h_{1}^{\perp}} \cos(2\phi) \qquad \text{(BM)} \otimes (\overline{\text{BM}})$$
$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^{2}\theta + \mu \sin(2\theta) \cos\phi + \frac{\nu}{2} \sin^{2}\theta \cos(2\phi)$$

 Φ_S : angle related to direction of target spin Φ , θ : angles in Collins-Soper frame

$$1 - \lambda = 2\nu$$

Lam-Tung relation

C.S. Lam and W.K. Tung, PRD 18 (1978) 2447 Boer and Mulders 1998: distribution function of the unpolarized nucleon with intrinsic k_T dependence. Describes correlation between **quark transverse spin & momentum**.

- If intrinsic transverse motion & QCD radiative effects: $\lambda \neq 1$, $\mu \neq 0$, $\nu \neq 0$
- Collider [CMS PLB 750 (2015)] and pion-induced DY [NA10 Z.Phys.C 31, 513 (1986)] violation of Lam-Tung relations
- NNLO QCD corrections can explain these findings [M. Vogelsang, M. Lambertsen, Phys.Rev.D93 (2016)].

Flavor-dependent EMC effect & parton energy loss

- EMC effect in DIS: nuclear PDFs found to be modified with respect to proton PDFs ("shadowing", etc.)
- Pion-induced Drell-Yan: Cloet, Bentz, Thomas (CBT) model: isovector mean field in a N≠Z nucleus causes different modification for u-and d-quarks.
- **COMPASS** data do not only probe the **EMC effect** but also **parton energy loss effects** via soft gluon radiation in the cold nuclear medium through multiple scattering.

Cloet et al, Phys.Lett.B 642, 210 (2006) D. Dutta et al, Phys.Rev. C 83 042201 (2011)

NA3, Phys.Lett.B 104, 335 (1981) NA10, Phys.Lett.B 193, 368 (1987)

2015 & 2018 COMPASS W/NH3 Drell Yan data: projected uncertainties

- Assuming no nuclear effects at all.
- Only statistical uncertainties shown.
- Expected DY statistics for 2018 assumed to be 1.5x that of 2015.
- Next: J/Psi production; gg-fusion vs. qqbar-fusion production mechanisms.

https://bluewaters.ncsa.illinois.edu

- Petascale supercomputer at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign.

- The NSF awarded \$208 million for the Blue Waters project, installation 2012.

Memory	Disk storage	Tape storage	Speed
1.5	26	380	13.3
petabytes	petabytes	petabytes	petaFLOPS

Cray inc. node	remark	CPUs per node	memory per node [GB]	memory per CPU [GB]	total number of nodes
XE6	dual CPU x86 processor	32	64	2	22,640
XK7	heterogeneous x86 CPU & ("accelerated") GPU	16	32	2	4,228

Data taking conditions at COMPASS - Drell Yan

7 months of operation (April - November). Each year ~ 1 petabyte of raw data. mDSTs of reduced size by factor 5-10.

Plans for Blue Waters: 2 years of DY data (2015, 2018) 2 years of GPD data (2016, 2017)

Example: 2015 DY	real data (RD)	simulated data (MC)
alignment periods	9	2
number of events [all M]	38,500 M(**)	12,800 M
number of events [M>2GeV]	41 M	12,800 M
file size	1 GB	5 GB
total volume	750 TB	165 TB
files	770,000	33,000
file type	raw	GEANT

(**) containing many low-mass combinatorial background events absent in the MC because of the generator cut M>2GeV

COMPASS data productions - the principle

Experimental data productions on Blue Waters

20

- PanDA harvests and exploits processing resources via autonomous pilot jobs.
- Tasks manageable on different sites by central interface.
- Framework recently integrated with BW run COMPASS data-productions.
- Each pilot runs on a worker node:
 A. Send a request —>
 B. Receives a Job —>
 - C. Runs the Job.

FTS3 (File transfer system): bulk data mover created to globally distribute LHC data.

PanDA = Production ANd Distributed Analysis = data production and monitoring system developed for ATLAS-LHC.

Using a supercomputer in experimental nuclear physics

The scope of the project:

NSF grant (award #1713684) Allocation "PRAC balh"

- Monte Carlo productions
- Real data productions
- 2D efficiency maps
- Physics analysis

The advantages, compared to the standard computing clusters:

- (Much) faster data production due to parallel processing
- Minimization of systematic uncertainties due to possibility of
 - applying multi-dimensional acceptance corrections;
 - simulating high realistic pile-up;
 - generating with minimum-bias trigger.
- Unprecedented precision determination of detector efficiencies
- More disk space for fast access available (in general)

These are examples. They might not apply in general.

BLUE WATERS

https://bluewaters.ncsa.illinois.edu/usage-project-details?project=balh

Outlook: Letter of Intent

A new QCD facility at the M2 beam line of the CERN SPS

- LoI (Draft 1.0) : <u>https://arxiv.org/abs/1808.00848</u>
- We are looking for new collaborators! Sign up here: <u>https://nqf-m2.web.cern.ch</u>

• Drell-Yan related:

>2021

> LS3

RF-separated hadron beams

- phase 1: Drell-Yan and charmonium production with conventional hadron beams
 - * Separation of valence and sea contributions in the pion
 - * Gluon distribution in the pion
 - * Nuclear dependence: Flavor-dependent valence modifications
- phase 2: Drell-Yan physics with high-intensity kaon and antiproton beams
 - * Nucleon spin structure with antiproton beam
 - * Valence quark distribution in the kaon
 - * Separation of valence and sea contributions in the kaon
 - * Gluon distribution in the kaon

Exploring hadron structure at CERN North Area's EHN2

Letter of Intent: programs

A new QCD facility at the M2 beam line of the CERN SPS

https://arxiv.org/abs/1808.00848

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high-pr. H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard ex clusive reactions	GPD E	160	2 · 10 ⁷	10	μ^{\pm}	NH_3^\uparrow	2022 2 years	recoil silicon, modified PT magnet
Input for DMS	production cross section	20-280	5 · 10 ⁵	25	Р	LH2, LHe	2022 1 month	LHe target
p-induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	P	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarisi- bility & pion life time	~100	5 · 10 ⁶	> 10	K ⁻	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	$\frac{K^{\pm}}{\pi^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	K	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	

Table 6: Requirements for future programs at the M2 beam line after 2021. Standard muon beams are in blue, standard hadron beams in green, and RF-separated hadron beams in red.

Summary: Drell Yan at COMPASS

- Spendovski Spendovski
- First spin-dependent Drell-Yan result (2015 data): sign flip of Siver function wrt SIDIS supported, albeit with large experimental uncertainties.
- 2018 run ongoing at this second expect at least stat(2018) = 1.5 x stat(2015)!
- Soon to come: modulations of spin-averaged cross section; DY cross section; nuclear effects
- Blue Waters speeds up data productions significantly
- A new QCD facility at the M2 beam line of the CERN SPS! Letter of Intent v1.0: <u>https://arxiv.org/abs/1808.00848</u> Express your interest, no obligations! <u>https://nqf-m2.web.cern.ch</u>

A new QCD facility at the M2 beam line of the CERN SPS

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the "Mapping Proton Quark Structure using Petabytes of COMPASS Data" PRAC allocation supported by the National Science Foundation (award number OCI 1713684).

Backup

Pion structure: why are pions so much lighter than protons?

- The pion: one of the most simple QCD objects. qq bound state & pseudo-Nambu-Goldstone boson acquiring mass via dynamical chiral symmetry breaking.
- **Proton quark & gluon structure**: detailed experimental information from (SI)DIS and jet, hadron, and Drell-Yan cross sections in pp / p-anti p
- Mesons only poorly constrained from early Drell-Yan cross section measurements for pions and completely unconstrained for Kaons.
- detailed Pion valence- and sea-quark distributions picture of - Valence and sea separation using π^+ and π^- beams of as high energy as possible - So far only NA3 & E615 end of 1980s. Low stat. Affected by nuclear effects. structure
- Charmonium production mechanism \Rightarrow pion gluon distributions. Available statistics can be increased by more than an order of magnitude.
- Nuclear effects: precise measurement of nuclear PDFs in the valence-quark region and check of flavor- (in)dependence of EMC effect

A new QCD facility

at the M2 beam line of the CERN SPS

Full,

pion

Drell-Yan with kaon and anti-proton beams

- Pion (*ud*) vs. kaon (*us*): presence of the heavier valence strange-quark might alter kaon properties.
- Kaon s-quark carries larger fraction of kaon momentum:
 ⇒ Valence distributions differ kaon vs. pion.
 ⇒ Less gluons in kaon than in pion (heavier quarks radiate softer gluons).
- Only experimental information on valence kaon PDF 30 years old: NA3. Sea unknown.
- Valence and sea separation in kaons using isoscalar targets and high-intensity K⁺ and K⁻ beams.
- Kaon-induced J/ ψ production to map kaon u-quark distribution
- Nucleon spin structure with anti-proton beams: measurements of observables related to proton TMDs with reduced systematic uncertainties. Example for Boer-Mulders TMD (BM):

 πp scattering: $(BM)_p \otimes (BM)_{\pi}$

anti-p_p scattering: $(BM)_p \otimes (BM)_{anti-p}$

 \Rightarrow Access to valence-quark TMDs of the proton only.

Panofsky-Schnell-System with two cavities (CERN 68-29):

- Particle species have same momenta but different velocities
- Time-dependent transverse kick by RF cavities in dipole mode
- RF1 kick compensated or amplified by RF2
- Selection of particle species by selection of phase difference $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1})$

Angles in Drell Yan

The Sivers effect

EIC "White Paper" arXiv:1212.1701, based on M. Anselmino et al., J. Phys. Conf. Ser. 295, 012062 (2011), arXiv:1012.3565

Sivers amplitude: predictions for COMPASS DY

Transverse momentum dependent evolution: Matching SIDIS

The SIDIS cross section: "harmonic(ϕ , ϕ s)·DF \otimes FF"

- $F_{XY[Z]}$ = structure function. X=beam, Y= target polarization, [Z= virtual-photon polarization]. X, Y $\in \{U, L, T\}$ Tr

Unpolarized Longitudinally Transversely

- λe = helicity of the lepton beam
- S_L and S_T = longitudinal and transverse target polarization
- ε = ratio of longitudinal and transverse photon fluxes

Drell Yan @ COMPASS - C. Riedl (UIUC), on behalf of COMPASS

SPIN 2018, Ferrara - September 13, 2018

Bacchetta et al., JHEP 02, 093 (2007)

COMPASS Blue Waters: project time line

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct		ov	Dec
2016									\searrow			\triangleleft	
2017													
2018									NOV	V			
2019													
n	ode ho	urs (use	ed up)	40,00)0	200,00	0 ((9,440, 0)00)	9,44(),000		
	proposal submission		1	Exploratory		Camp	us	PRAC	-A	PRAC	С-В	al	locations

COMPASS Blue Waters computing model

Raw data management on Blue Waters

PanDA production interface

Cloud, Sites	Status	nJobs	defined	waiting	assigned	throttled	activated	sent	starting	running	holding	merging	transferring	finished	failed	cancelled	% failed
all sites including MCP		77418	0	0	0	0	39	196	16	898	252	0	0	52576	23441	0	30
BW_COMPASS_MCORE	online	3112	0	0	0	0	39	32	16	48	0	0	0	256	2721	0	91
CERN_COMPASS_PROD	online	74306	0	0	0	0	0	164	0	850	252	0	0	52320	20720	0	28

COMPASS	PanDA Desi	h - Productions	- Tasks	Jobs	- Errors	- Users	- Sites	- Search						α	OMPASS	Help ~
The summary	he summary for the dy2015W12t5BWtest production started on 03 Apr 2018. The total number of chunks is 968. The average walltime of a finished job is 1234 minutes.														E	Built 10:42
Ta dy2015	asks for W12t5BWtest	Jobs for dy2015W12t5B	Jobs for Show settings path for dy2015W12t5BWtest													
Proce	ssing 960	mDST merging Total: 968			mDS	T migration total: 968		hist merging Total: 968	hist merging Tota: 968		hist migration Tota: 968		merging tal: 958	ED migratio Tota: 968	n	
show 50	- entries													Search:		
Run 🔺	Number of events	Total number of chunks	Staged 🕴	Sent ≬	Running 0	Failed 🕴	Finished 0	Status of mDST 0 merging	X- checked () mDST	mDST migration	Status of histogram () merging	Histogram migration	Status of event dump merging	X-checked event dump	Event du migration	n o
263293 🔗	22373350	466	-	40	9	-	417		no	-	-		-	no	-	
060000.0	04004084	500		47	20											

Showing 1 to 2 of 2 entries

- Brought to you by the PanDA team. All times are in UTC. Page may be cached; check the build time above. PanDA home
- The PanDA pilot receives jobs from remote PanDA server, requests jobs by preparing PBS jobs and sending them to PBS MOM nodes
- The pilot checks if jobs are OK, sends monitoring callback to PanDA and, once jobs are finished, performs stage-out of result files to the target directories.