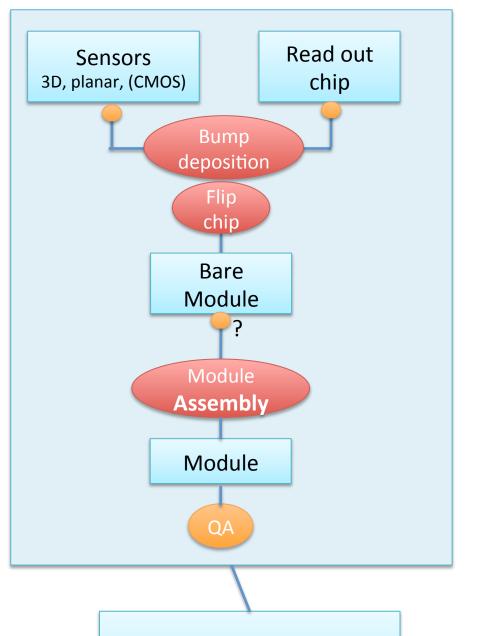

Possibile organizzazione per Itk production in Italia

16.12.2016 C.Gemme (INFN Genova)

The ITK Pixel detector

The ITK Pixel detector



Surfaces

		Surface [m ²]	
Layout Part	Inclined	Extended	Inner
Inner Straight	0.35	1.95	0.35
Inner inclined	0.64	_	0.64
Inner Total	1.00	1.95	1.00
Outer Straight	2.53	6.36	6.36
Outer inclined	2.28	_	_
Outer Total	4.82	6.36	6.36
Barrel Total	5.82	8.31	7.36
Rings		7.66	

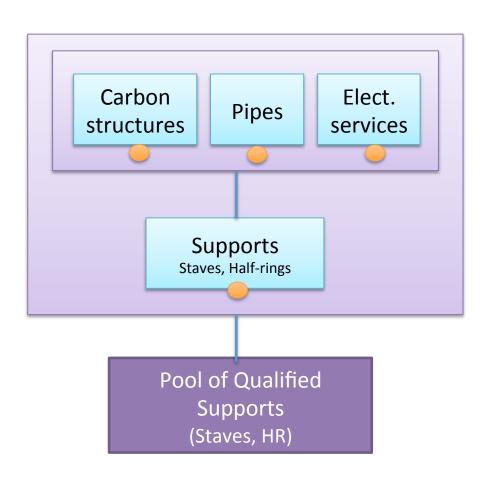
Inner totale + Row0 (1.1 m²)

Row 0 \rightarrow 1.11 m² Row 1-3 \rightarrow 6.55 m²

Production organization **Modules**

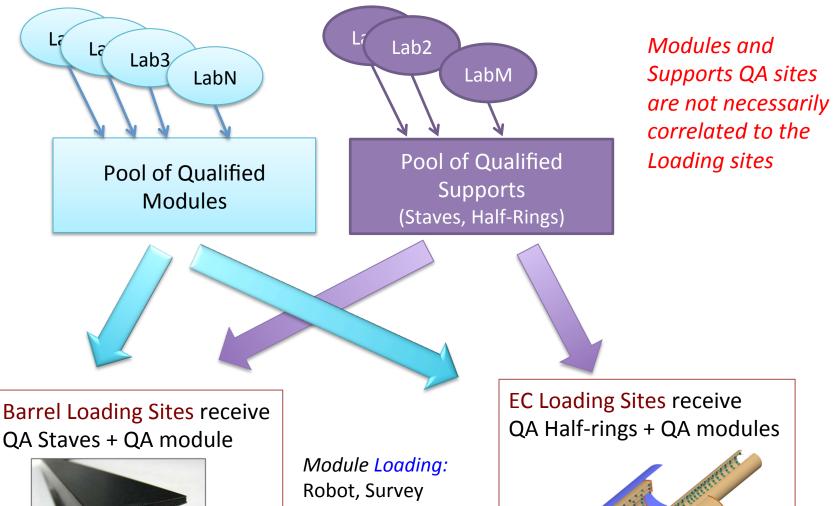
Assembly modules

- Tools: clean room, precision setup,
 Wirebonder, pull tester
- o Labs: Ge, ... ?

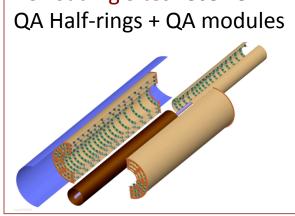

Modules QA

- o Tools: HW setup, source, cold box
- Labs: ALL!!

Pool of Qualified Modules* (3D, Planars ...)


* Extremely simplified, there might be 4/5 types of modules

Production organization **Supports**

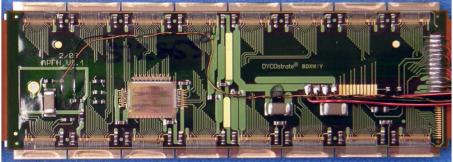


- Of course the process is a much more complex that this simplification.
- But at the end there are qualified supports....

Production organization: **Loading**

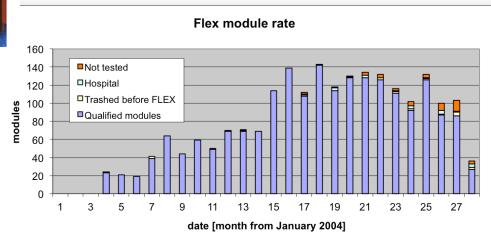
Module Loading:
Robot, Survey
Loaded supports QA:
HW setup, source,
cold box

ATLAS Pixel Module Production

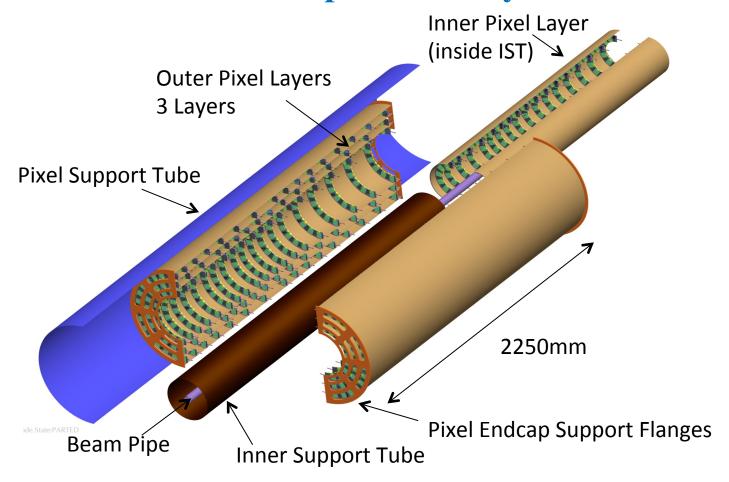

Production: 2004-2006

Surface: 1.73 m²

1744 modules installed

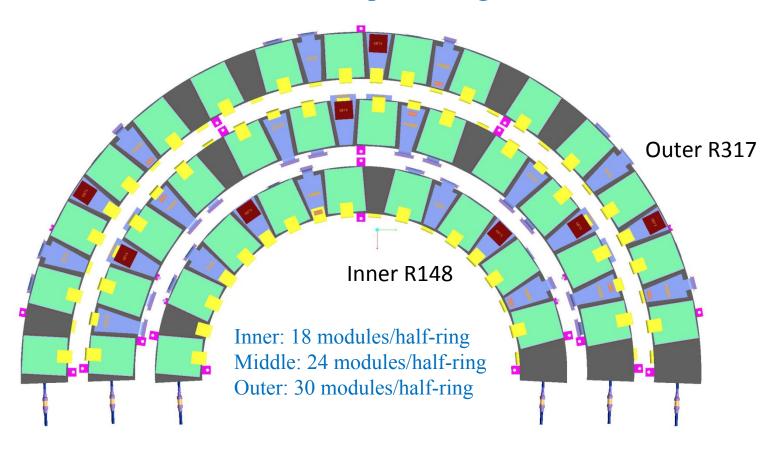

16 FE chips per sensor tile

Paper: 2008 JINST 3 P07007



Sites:

- 3 (MI, DO, BN): Bare module QA
- 6 (GE, DO, BN, SIE, LBL+CPPM):
 Assembling and testing modules
- 4 (CPPM, WUP, GE for barrel +LBL for Disk): Loading modules on structures and QA supports.
- Production peak:
 - 140 modules/month


Pixel Outer endcap overall layout

19 Inner Rings16 Middle Rings16 Outer Rings

2412 Quad-Module per EC

Pixel endcap half-rings

- The half-rings will be assembled into a complete end-cap.
- Here, I am concerned with timescales for mounting pixel quad modules onto half-rings and testing of the assembled half-rings
- How long will it take? Does it fit the schedule?

Most recent proposed schedule

- UK Endcap needs to arrive at CERN at start of 2023
- Module to local supports loading starts late 2020/early 2021
- Near 2 years for module loading onto half-rings during production phase
- FEIC production is Q1 2020
- Jun 2019 Mar 2020 is module pre-production
- We must aim for loading to start ramping asap (late 2019)
- By Jan 2021 we have must have amassed significant experience
- Let's be sure this is achievable.... First a quick reminder of how we propose to do it

Numbers of modules to mount (1)

- 19 inner 16 middle and 16 outer rings 36, 48, 60 quads/ring respectively
- The natural sub-unit for assembly discussions is the **half-ring**:
- 38 inner 32 middle and 32 outer half-rings 18, 24, 30 quads/half-ring respectively
- We would mount 684 inner, 768 middle, 960 outer = **2412** modules
- Add spare half-rings: 1 inner, 2 middle, 2 outer = **2538** modules
- Most naïve assumption:
- 1 hr to mount a module, say 35 hr/week
- 73 weeks, close to 1 year 9 months (44 working weeks/year)

Realistic that the assembly site would likely have at least one physicist and 2 technicians, full time, working normal 8 hour days.

Numbers of modules to mount (2)

- Refinement: How well does the modularity fit with a working week?
- I assume we can populate every second position and leave overnight to cure the glue. One side at a time.
- 18-module half-rings:
- 9 modules takes 2 days \Rightarrow 4 days/half-ring \Rightarrow 39 x 4 = 156 days
- 24-module half-rings:
- 12 modules takes 2 days \Rightarrow 4 days/half-ring \Rightarrow 34 x 4 = 136 days
- 30 module half-rings:
- 15 modules takes 3 days \Rightarrow 6 days/half-ring \Rightarrow 34 x 6 = 204 days
- 496 working days at 22 working days/month => 23 months
- Not far off **2 years**

How much time needed to test the half-rings (1)?

- If we only have 1 HSIO setup (Glasgow) then we probably need about 1 hour to test basic functionality of 4 quads.
- DAQ is easily expandable so below is worst case.
- 3 hours/side inner half-ring => 6 hours/half-ring => 234 hours total
- 3 hours/side middle half-ring => 6 hours/half-ring => 204 hours total
- 4 hours/side outer half-ring => 8 hours/half-ring => 272 hours total
- Naively looks near 20 weeks **not including** time for cabling, cooldown, warmup, flushing with dry N2.... Quicker if more quads can be tested in parallel.
- I would add contingency to this, but:
 testing time << assembly time
 should be done in parallel to the mounting operations (needs enough hands!)

1 site only

14

How much time needed to test the half-rings (2)?

- What if we use a mobile source to check for disconnected bumps?
- IBL used a 30 MBq Sr-90 source, exposure time 7 minutes per FEIC
- Pixel size not the same as IBL, may be some leeway in source rate or possibility to use >1 source
- Say 0.5 1hr per quad exposure time?
- Something like 50+ more weeks, also in parallel. Could be significant.

If we make a measurement of noise vs sensor bias, maybe don't need to do this at all....

Summary

- Just under 2 years going **flat out** to populate the half-rings for one EC with one mounting site. Obviously gets easier with more sites!
- The testing time is shorter and mostly run in parallel, should not impact the schedule as long as staffing sufficient.
- Little contingency WRT the schedule.
- Smart use of ramp up during pre-production needed.
- There are detail changes one could make to buy a little time.

Achievable but definitely not easy!

If more speed were needed, something might be gained by a change in philosophy. Mounting using jigs could be faster, using the gantry for surveying. This would lead to reduced accuracy as a trade-off. More automation using the gantry system (e.g. for glue application) is also possible.

My View: Module Assembly and QA

- Assumo che per i moduli Assembly e QA faremo il nostro share:
 - Contribuiremo all'assembly e QA dei 3D (~1 m²/2 vendors) per paragone 0.04 m² sono i 3D installati in IBL.
 - Altro se necessario.
 - → Coinvolgere piu' lab, almeno due per module assembly, 4-5 per module QA.
 - E' MOLTO importante per il formare expertize per l'operazione negli anni futuri!

Endcap Loading and QA

- A Genova montati in passato ~ 40 staves (~500-600) moduli.
 - Procedura lenta, va sicuramente ottimizzata.
 - lo cercherei di preparare 2 siti per il Loading (oppure se uno solo fosse Genova, lo alleggerirei degli altri compiti come Module e HR QAs).
 - Almeno 2 siti per la QA dei HRs.

Endcap assembly

- L'oggetto ha dimensioni:
 - Lungo ~ 2.5 m
 - Diametro di 60 cm

- Serve un lab con spazio per assemblaggio degli HR nelle shell e possibilita' di test.
 - Cern se disperati?
 - Oppure un lab che abbia le risorse di per se', mi sembra difficile che altri lab possano mandare manpower in un sito italiano per lunghi periodi di tempo.