Emulsion Cloud Chamber for the FOOT experiment

INFN_Napoli

G. De Lellis, A. Di Crescenzo, <u>A. Lauria</u>, M.C. Montesi, V. Tioukov

Index

Updates:

- 1. Detector structure
- 2. Activity in 2017
- 3. Refreshing machine
- 4. Emulsions from Japan
- 5. Exposure at LNS

1. Detector structure: layout

- > Section 1: alternated layers of emulsions and target (C/CH₂)
 - vertex detector
 - tracking of all charged particles produced;
- Section 2: made of emulsion films only
 - charge identification for low Z fragments (H, He, Li)
- Section 3: alternated layers of emulsions and lead
 - Momentum measurement by range

1.Detector structure: Section 1 (vertexing)

- Alternate target layers of C or CH_2 (1 mm) and emulsion (300 μ m)
- Vertex detector and particle tracking
- Chamber thickness defined by the interaction length → obtain a sufficiently high number of interactions fully contained in the detector
- 20% of Carbon ions interacting in 3 cm Lexan
- Total length ~ 30 cells = 39 mm

1. Detector structure: section 2 (charge id)

- Charge identification for low Z fragments (H, He, Li)
- Emulsion were differently treated after the exposure and before the chemical treatment according to their position in the elementary cell (0, 1, 2)

1.Detector structure: Section 2

Cells	3	9	13	20
H-He	3.3	4.5	6.5	
He-Li	2.6	3.9	4.3	5.0
Li-Be	1.7	2.7	3.1	3.5

JINST 2 (2007) P06004

Activities to do:

- New emulsion batch
- different sensitivity to mip: ~50 grains/100 μm
- Test to do to characterise emulsions thermal response

1.Detector structure: Section 3 (momentum)

- Emulsion films interleaved with 1 mm thick lead plates
- Lead plates from ~10 to ~50 according to the incident beam

2. 2017 Activity

for the whole detector:

- layout sw simulation
- mechanical design (packaging, support, movement)
 R&D for section 2:
- preparation of the LNS exposure
- LNS measurements

3. Refreshing machine

- Emulsions must be differently treated after the exposure and before the chemical treatment
- Climatic chamber GENVIRO 120C
- February-march 2017: purchase and installation at LNGS in a dark room
- Technical characteristics:
 - Temperature range: -40°C to 180°C (+- 0.1 °C to +-0.3)
 - Humidity range: 10% to 98% (+- 0.5%)
 - Internal volume: 120 l

4. Emulsions from Japan

- ~ march 2017: arrive 100 emulsions from Japan
- Preliminary tests at LNGS with cosmic-rays in preparation of the run at LNS

5. Exposure at LNS

- 9 BTU (1 BTU=8 hours) allocated in total to test the following detectors:
 - 1) Emulsions (Naples)
 - 2) Scintillator with SipM (Pisa)
 - 3) Silicon tracker (Perugia-LNF)
- Assumed to be after June 2017 in the request
- Coordinated effort among the three labs

5. ECC Exposure at LNS

Beam monitoring:

- Scintillator counter for flux monitoring
- **Chamber** for spatial distribution with ~ mm resolution

Depending on the rates, ECC may be moved by a motorised 2D stage Beam Emulsion

 Exposure of ECC (section 2) made of ~30 emulsions in order to measure the sensitivity to p, alpha

Journal of Instrumentation 2 (2007) P060044

The end

2. Section 2: how many elementary cells for charge separation?

The standard deviation for the separation of pair of nuclei, as function of number of elementary cells, is reported in the table.

- 1 cell = 0.9 mm length
- E.g., to obtain a 3σ He-Li separation, 9 cells are necessary, (total thickness ~8.1 mm)

Cells	3	9	13	20
H-He	3.3	4.5	6.5	
He-Li	2.6	3.9	4.3	5.0
Li-Be	1.7	2.7	3.1	3.5

3. Detector construction: material

	EC	тот		
	Section 1 (em+C)	Section 2 (em)	Section 3 (em+Pb)	
Emulsion films	30	30	20-50	80-110
C or CH ₂ layers	30	0	0	30
Pb plates	0	0	20-50	20-50

• At least 2 ECC (C or CH_2) for each energy exposure

4. Schedule

TASK	TIME
Film preparation for calibration test @ CERN	1 week
Calibration test at Trento/Catania	1 week
Film treatment for calibration test @ CERN	2 weeks
Film preparation for the run @ CERN	1 week
RUN at Heidelberg/CNAO	1 week
Film treatment for run @ CERN	2 weeks

- 3 persons for each task → 3 months men in 2017 (calibration) and in 2018 (run)
- Test with He, Li could be useful for calibration purposes