TOF Status

Matteo Bertazzoni

30 November 2016

Structure and Requirements

Structure

- 22+22 plastic scintillator bars arranged in two orthogonal layers
- Double side SiPM read-out
- 88 channels read-out in coincidence each-others and with the start counter

Requirements

- Time resolution of 70 ps (standard deviation)
- High energy resolution
- Data rate of few kHz/chn
- Synchronization with the start counter and with the other detector of the system

Preliminary Tests

AdvanSid Evaluation Board

Experimental Setup

- Plastic scintillator 3x3x10 mm
- 2 SiPM Hamamatsu
- 2 SiPM Evaluation Board AdvanSid with low gain (~ 10)
- Power supply for SiPM and Evaluation Board
- ¹⁰⁶ Ru source [EP:3.546 MeV (78,8 %), 2.412 MeV (9.82 %)]
- Digitizer DRS4 V3

Digitizer

Main Features

- Sampling speed from 700 MSPS to 5 GSPS (1024 sampling)
- Single ended with 700 MHz bandwidth
- High SNR: 69 dB after offset correction
- Low Noise: 0.35 mV after offset correction

WaveDREAM and DAQ based on MEG

Main Features

- Same chip of Evaluation Board (16 Ch.)
- Single ended \sim 900 MHz bandwidth
- Power supply for SiPM and Evaluation Board
- Variable gain (1,10,100) with PZC
- System in development (info Stefan Ritt, PSI)

Contribution of

Marco Francesconi, Luca Galli and Donato Nicolò by INFN Pisa (MEG)

Data

SiPM Signals

Energy of the two signals

Starting sample

- Number of events: ~ 6600
- Range amplitude signals from -20 to -100 mV

Problems

- Optical coupling
- Limited accouracy the selection of V_{ov}

Reconstruction Timing Method with Fixed Th

- Fix a threshold
- Consider two points before and two points after the threshold

- Extrapolate linear fit
- Intersect fit with the threshold
- Calculate time difference

Reconstruction Timing Method with CFD

- Variable threshold depending on max signal amplitude
- Consider two points before and two points after the threshold

- Extrapolate linear fit
- Intersect fit with the threshold
- Calculate time difference

Histogram of dt

Histogram dt for fixed threshold

Optimal Threshold in the two Cases

 σ vs. fixed threshold

 σ vs. CFD threshold

Optimal threshold for best σ_{FT}

For Threshold=
$$-2mV$$

$$\sigma_{FT} = (221 \pm 10) ps$$

Optimal threshold for best σ_{CFD}

For Threshold=5%

$$\sigma_{CFD} = (189 \pm 6)ps$$

Another Method

Fit with fixed threshold

Fit with CFD threshold

Optimal threshold for best σ_{FT}

For Threshold=
$$-5mV$$

$$\sigma_{FT} = (225 \pm 10) ps$$

Optimal threshold for best σ_{CFD}

For Threshold=10%

$$\sigma_{CFD} = (197 \pm 9)ps$$

11 / 16

Scatter plot dt vs. dE

Scatter plot dt vs. dE with FT

Scatter plot dt vs. dE with CFD

Similarities

- Correlation with dt and dE (more evident in the case of FT)
- Effect has to be fix

Scatter plot correction

Scatter plot correction with FT

Scatter plot dt vs. dE with CFD

Improvement σ_{FT}

Before:
$$\sigma_{FT}=(221\pm10) ps$$

After:
$$\sigma_{FT} = (189 \pm 10) ps$$

Improvement σ_{CFD}

Before:
$$\sigma_{\textit{CFD}} = (189 \pm 6) \textit{ps}$$

After:
$$\sigma_{CFD} = (181 \pm 6) ps$$

Scatter plot dt vs. E_1+E_2

Scatter plot dt vs. E_1+E_2 with FT

Scatter plot dt vs. dE with CFD

Observations

Considerable dispersion of points

Observations

- Less dispersion of the points
- Remarkable "funnel" shape

Summary Results

	Threshold extrapolation		Zero extrapolation	
	with FT	with CFD	with FT	with CFD
Threshold	-2 mV	5%	-5 mV	10%
σ	221 ps	189 ps	225 ps	197 ps
σ with corr	189 ps	181 ps	195 ps	185 ps

Next Step: Simulation and Validation

Goals

- Performances vs position
- Simulation and validation

Expected results

- Arrival time probability of photons as a function of the scintillation point in the bar
- Development of the correction algorithm for the interaction position