DRIFT CHAMBER DETECTORS IN FOOT

G.Battistoni, Y.Dong, I.Mattei, S.Muraro, V.Patera, A.Sarti, A.Sciubba, S.M.Valle

> November 30, 2016 FOOT meeting

Drift chamber detectors in FOOT

1

What we have

- Drift chamber beam monitor (FIRST, HIT and GSI test beam experiment)
- Alternated horizontal and vertical wire layers
- Three rectangular cells per layer (16mm x 10mm)
- Consecutive layers of each view staggered by half a cell to minimize tracking ambiguities
- Not optimized for multitrack detection
- Needed an accurate calibration test

Requirements & issues

Spatial resolution ~ 100-150 μm

Low density material to minimize inelastic interaction probability

Multi-track detection capability

Requirements & issues

Spatial resolution ~ 100-150 μm

Low density material to minimize inelastic interaction probability

Multi-track detection capability

 Total dimension (number of cells per layer and number of layers)

Gas type

Requirements & issues

Spatial resolution ~ 100-150 μm

Low density material to minimize inelastic interaction probability

Multi-track detection capability

Low drift velocity

Reconstruction algorithm

Low drift velocity

Increase cell dimensions
 → many tracks could cross the same cell
 → minimum separation angle?

Decrease cell dimensions → number of channels increases

 \rightarrow inelastic interaction in wires increases

Reconstruction algorithm

Reconstruction algorithm

Increase pressure?

 atmospheric pressure is easier to handle (thinner mylar layers required)

Decrease the electric field?

- minor wires displacement due to electrostatic forces
- also efficiency decreases

Cell dimensions

Explore different gas mixtures

Ar-CO₂ or He-CO₂? Does He minimize fragmentation probability?

Cell dimensions

Garfield

- Toolkit for detailed simulation of particle detectors which use a gas mixture as sensitive
- With the input of medium and geometry, can interface with different programs to calculate material properties, fields and transportation of particles
- Will be used for MC simulation of the beam monitor and drift chamber, to estimate the drift parameters (drift velocity, spacetime relationship...) and to optimize the geometry

Cell dimensions

Low drift velocity

Reconstruction algorithm

Example of TDC multihit

- 64 channels
- 3 programmable ranges: 100 ps LSB (19 bit resolution), 200 ps LSB (19bit) and 800 ps LSB (17 bit)
- ECL/LVDS inputs automatically detected
- 5 ns Double Hit Resolution
- Leading and Trailing Edge detection
- Trigger Matching and Continuous Storage acquisition modes
- 32 k x 32 bit output buffer
- Cost: approximately €6200 (VAT included)

Low drift velocity

TDC multihit

Wire measurement (e.g. from drift-chamber or STT).

Genfit

- Open source track-fitting toolkit suitable for a wide variety of experiments and detectors
- Will be used as tracking algorithm for the beam monitor and the drift chamber
- Provides different fitting algorithms:
 - Kalman filter which linearizes the transport around the state predictions
 - Kalman filter which linearizes around a reference track
 - Deterministic annealing filter
 (DAF) ¹³

Beam Monitor Simulation

Beam Monitor Simulation

Drift Chamber Simulation

Conclusions & take home messages

- The existing beam monitor requires to be optimized for multitrack detection:
 - Gas mixture, electric field, cell and total dimension
- An accurate calibration test is strongly needed (next year?)
- Parameters optimisation will be performed by means of the MC code FLUKA and Garfield
- We need to learn how to use the reconstruction algorithm (Genfit)

