Measurement of the geoneutrino fluxes: status and near future

#### Oleg Smirnov JINR Dibna

LNGS November 28, 2016



10

#### Geo-neutrinos: anti-neutrinos from β-decays of radioactive elements in the Earth



| Decay                                                                                   | $T_{1/2}$             | $E_{\max}$ | Q     | $arepsilon_{ar{ u}}$                | $arepsilon_{H}$       |
|-----------------------------------------------------------------------------------------|-----------------------|------------|-------|-------------------------------------|-----------------------|
|                                                                                         | $[10^9 \mathrm{~yr}]$ | [MeV]      | [MeV] | $[\mathrm{kg}^{-1}\mathrm{s}^{-1}]$ | [W/kg]                |
| $^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 ^{4}\text{He} + 6e + 6\bar{\nu}$        | 4.47                  | 3.26       | 51.7  | $7.46 \times 10^7$                  | $0.95 \times 10^{-4}$ |
| $^{232}\mathrm{Th} \rightarrow ^{208}\mathrm{Pb} + 6~^{4}\mathrm{He} + 4e + 4\bar{\nu}$ | 14.0                  | 2.25       | 42.7  | $1.62\times 10^7$                   | $0.27\times 10^{-4}$  |
| $^{40}\text{K} \to {}^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$                           | 1.28                  | 1.311      | 1.311 | $2.32 \times 10^8$                  | $0.22\times10^{-4}$   |

 Earth emits (mainly) antineutrinos whereas Sun shines in neutrinos.

 A fraction of geo-neutrinos from U and Th are above threshold for inverse β on protons: 1.8 MeV

 Different components can be distinguished due to different energy spectra: e. g. anti-v with highest energy are from Uranium.



#### Heat flow through the surface of the Earth





"Earth's surface heat flux", J. H. Davies and D. R. Davies (2010) 47±2 TW

38 347 measurements of the thermal flux In agreement with previous estimations based on incomplete set of the same data 46±3 TW[Jaupart et al., 2007] and 44±1 TW [Pollack et al., 1993]

|         | 23 - 45 | 75 - 85  |
|---------|---------|----------|
| mVV m⁻∠ | 45 - 55 | 85 - 95  |
|         | 55 - 65 | 95 - 150 |
|         | 65 - 75 | 150 - 45 |



10 - 15

## **Primordial heat**



#### Primordial heat sources: Gravitational energy Short-lived isotopes decays <sup>26</sup>AI (7.17×10<sup>5</sup> yr)



#### Earth's surface heat flow 47 ± 2 TW



after Jaupart et al 2008 Treatise of Geophysics

#### Earth models and radiogenic heat

Cosmochemical (based on meteorites composition) – Earth composition is based on the enstatine chondrites (E-chondrites), the only group of chondrites identical to the Earth composition (Javoy et al., 2010) :

#### ~10 TW

 Geochemical (composition of Earth minerals) – cosmochemical relative abundancies (based on carbonaceous chondrites CI) with absolute abundancies from petrology (Lyubetskaya & Korenaga,2007; McDonough & Sun, 1995; Palme & O'Neill, 2003):

#### ~20 TW

 Geophysical/geodynamical (parametric convection) – convection requires viscosity consistent with surface heat flow. Uses using scaling laws to relate heat flow and viscosity, predicting the thermal evolution of the Earth (Crowley et al., 2011; Turco, 1980):

#### ~30 TW

Compared to total 47±2 TW

9 - 36 TW are left to the internal non-radiogenic heat, definening the thermal evolution and history of the Earth.

#### Models of the Earth and thermal flux

"Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle" Ondrej Sramek et al.

| Model         | Full thermal flux,TW | Mantle contribution, TW |
|---------------|----------------------|-------------------------|
| Cosmochemical | 11 ± 2               | 3 ±2                    |
| Geochemical   | 20 ± 4               | 12 ±4                   |
| Geophysical   | 33 ± 3               | 25 ±3                   |

Geophysical models need relatively high contribution of radiogenic heat to explain thermal flux in the mantle (otherwise model leads to the "thermal catastrophe" in archeosoic)

#### **Two detectors measured** geo-neutrino Kamioka LNGS Assergi, L'Aquila Santa Sede (Vaticano) Large volume LS underground Calibration device detectors 2200 8" Thom EMI PMTs Stainless Steel (1800 with light collectors Sphere 13.7m Ø 400 without light cones) Nylon Sphere Muon veto: 8.5m @ 200 outward 0 pointing PMTs 0 0 A 0 Water-Cherenkov Photomultiplier 100 ton outer detector tube fiducial volume Nylon film Rn barrier Non-scintillating Outer detector oil Scintillator photomultiplier tube Liquid scintillator (1 kton) Balloon (13 m diameter) Pseudocumene Water Containment vessel Buffer (18 m diameter) — Holding Strings Steel Shielding Plates Stainless Steel Water Tank 18m Ø 8m x 8m x 10cm and 4m x 4m x 4cm

Borexino: 300 t LS (3500 mwe)

KamLAND: 1 kton LS (2200 mwe)

#### **Detection of geo(anti)neutrino**

 $\Phi_{\bar{\nu}} \sim 10^6 \, \text{cm}^{-2} \text{s}^{-1}$ 

- Earth (in construst to the Sun) emits antineutrino.
- Part of antineutrino in the U and Th decay chains is emitted with E>1.8 MeV (IBD threshold)
- Contributions from U and Th are distinguishable
- Oscillations are averaged: <Pee>=0.54±0.02









#### BOREXINO

Bosnali Hercegovina Bosnia and



# Main backgrounds in geo-neutrino measurements

1)Reactor antineutrinos (81% of the total antineutrino signal in KamLAND geonu window [0.9-2.6 MeV] and ~36% for the Borexino case): Geo/Reactor ratio 0.23 in KL vs 1.8 in Borexino;

2)Cosmic muons induced backgrounds, including cosmogenic production of (βn)-decaying isotopes (at LNGS the muons flux is of about factor 7 lower than at the Kamioka site)

 3)Internal radioactive contamination: accidental coincidences, (αn) reactions







#### Data selection for geo-neutrino analysis

- Total exposition is 907±44 tyr taking into account detection efficiency
- Antineutrino are detected using delayed coincidence tag from the inverse beta- decay on proton (~256 μs)

$$\overline{v_e} + p \rightarrow e^+ + n$$

$$\downarrow \approx 250 \ \mu s$$

$$n + p \rightarrow d + \gamma (2.2 MeV)$$

- ~500 p.e./MeV for electrons
- 438 p.e./2 x 511 keV γ's

### Set of antineutrino cuts

- 1.  $Q_{\text{prompt}}$ >408 p.e. :  $3\sigma(E)$  above  $2m_e$
- 2. 860 < Q<sub>delayed</sub> < 1300 p.e
- 3. ∆R<1 m;
- 4. 20 <∆t<1280 μs

tuned to select maximum of correlated events in space and time with max. suppression of acc.coincidences

- 5. Pulse shape.  $g_{\alpha\beta}$ (delayed)<0.015 : selecting e-like events (prompt signal from fast n is  $\alpha$ -like)
- 6.  $T_{\mu}$ >2 ms : fast neutrons after muon
- T<sub>µ</sub>>2 s for every muon passing through internal detector. Long-lived cosmogenic (βn) isotopes. ~10% of live time loss.
- 8. Multiplicity cut: no n-like events in ±2 ms window
- 9.  $R_{IV}(\Theta, \phi)$ - $R_{prompt}(\Theta, \phi)$ >0.30 m : dynamical, follows IV shape
- 10. FADC cut : independent check of candidates features with 400 MHz digitizing system

**Total efficiency=84.2±1.5% (MC). 77 candidates selected** 

### Summary of backgrounds

| Source                                                      | events                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------|
| Cosmogenic <sup>9</sup> Li and <sup>8</sup> He              | $0.194 \pm 0.015(\text{stat})^{+0.124}_{-0.088}(\text{syst})$ |
| Fast neutrons from μ in Water Tank                          | < 0.01 (90% CL) (measured)                                    |
| Fast neutrons from μ in rock                                | < 0.43 (90% CL) (MC)                                          |
| Non-identified muons                                        | $0.12 \pm 0.01$                                               |
| Accidental coincidences                                     | $0.221 \pm 0.004$                                             |
| Time correlated background                                  | $0.035 \pm 0.028(stat)^{+0.006}_{-0.004}(syst)$               |
| Spontaneous fission in PMTs                                 | $0.032 \pm 0.003$                                             |
| (α,n) reactions in the scintillator [ <sup>210</sup> Po]    | $0.165 \pm 0.010$ (stat)                                      |
| ( $\alpha$ ,n) reactions in the buffer [ <sup>210</sup> Po] | < 0.66 (90% CL)                                               |
| <sup>214</sup> Bi- <sup>214</sup> Po                        | 0.009±0.013                                                   |
| TOTAL                                                       | <b>0.78</b> <sup>+0.13</sup> -0.10                            |

# Borexino 2015: antineutrino spectrum (77 events)



### geoneutrinos.org

| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ieoneutrinos.org - Mozilla Firefox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - + X                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <u> E</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |
| 🗴 🐨 Пост httdoc 🚥 BBC How V Hot Sp 🐨 Hots 🎽 Alib 🏦 Carp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ● GIXEN 💼 *MAI 🛍 Carp 💼 Upd 🛍 Carp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🛍 Vint 🛸 JINR 🚨 Если 🥥 Сбе 🛛 Geon × 🔶 🔹 🚽                                                                                           |
| e 🖲 geoneutrinos.org/reactors/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓ ৫ Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☆ 🖻 🛡 🖡 🖨 🖬 Z 🗋 ▾ 🔗 🙆 😫 🚍                                                                                                           |
| Geoneutrinos.org About Model Reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |
| Reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |
| + Pistoia Pistoia Marino Perano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zadar Detector Reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GeoNu Output & Stats                                                                                                                |
| Firenze Pesao<br>Pisa<br>Lucomo Toscano<br>Grosseto<br>Umbria<br>Grosseto<br>Viterbo<br>Roma<br>Latino<br>Grosseto<br>Umbria<br>Grosseto<br>Umbria<br>Latino<br>Grosseto<br>Umbria<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>Latino<br>L | Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectrum<br>Spectr | Total<br>Closest Reactor<br>Reactors<br>Geoneutrinos<br>Uranium<br>Thorium<br>Thorium<br>Antineutrino Energy (MeV)<br>ass Hierarchy |

### Borexino: fit results for fixed M(Th)/M(U)=3.9

N<sub>geo</sub>=23.7<sup>+6.5</sup>-<sub>5.7</sub>(stat)<sup>+0.9</sup>-<sub>0.6</sub>(syst) events

S<sub>geo</sub>=43.5<sup>+11.8</sup>-10.4(stat)<sup>+2.7</sup>-2.4(syst) TNU

•  $N_{react} = 52.7^{+8.5}_{-7.7}(stat)^{+0.7}_{-0.9}(syst)$  events  $S_{react} = 96.5^{+15.6}_{-14.2}(stat)^{+4.9}_{-5.0}(syst)$  TNU

#### Predicted reactor signal 87±4 TNU

- Systematics: 4.8% on FV and 1% on the energy scale
- \*1 TNU = 1 event on  $10^{32}$  protons in 1 yr (~1 kt of LS)



#### U/Th signal (no energy resolution)



#### **Unconstrained U/Th analysis**



1,2 and 3  $\sigma$  contours for  $S_U:S_{Th}$  signals

### **Radiogenic heat: Borexino**



### Signal from the mantle



- Total contribution from the Earth crust (Coltorni et al., Huang et al.) (LOC + ROC) is S<sub>geo</sub>(Crust) = (23.4 ± 2.8) TNU -> 12.75 ±1.53 events (+stat.smearing)
- subtraction of probability distributions for the total signal (from the fit) and pdf for crust (normal approximation). Non-physical values of difference are excluded and final p.d.f. renormalized to unity.

p.d.f.(Mantle)=p.d.f. (Geo)-p.d.f.(Crust) :

Mantle could have as little as 1-3 TW or as much as 28 TW

$$S_{geo}(Mantle) = 20.9^{+15.1}_{-10.3}$$
 TNU

#### with a probability of 98% we observe at least 1 event from the mantle

- Note:
  - Mean value is bigger compared to a simple difference <S<sub>geo</sub>>-<S(Crust)>=43.5-23.5=20.1 as a result of excluding non-physical values from p.d.f.
- LOC: M. Coltorti et al., Earth Planet. Sci. Lett. 293 (2010) 259.
- ROC: Y. Huang et al. Geochemistry, Geophysics, Geosystems 14, 2003 (2013).

## Study of the local geology LNGS (Coltorti et al., Geo.Cosm. Acta 75(2011) 2271)



Distances R< 900 km gives ~50% of the signal.

U and Th content in samples

Using available seismical and stratigraphical data (relative geological age of sediments) 3D model has been constructed (down to Moho depth) for 10<sup>6</sup> cells with 1 km<sup>3</sup> volume

Contribution from the local crust  $S_{geo}(LOC) = (9.7 \pm 1.3) TNU.$ 

1 TNU = 1 event per  $10^{32}$  target nuclei in 1 yr

#### Antineutrino measurements with Borexino

| Year | Live<br>time,<br>days | Exposition<br>t-yr | N <sub>cand</sub> | N <sub>geo</sub>          | S <sub>geo</sub> TNU               | P(0)                           |
|------|-----------------------|--------------------|-------------------|---------------------------|------------------------------------|--------------------------------|
| 2010 | 537.2                 | 252.6              | 21                | 9.9 <sup>+4.1</sup> -3.4  | 65.2 <sup>+27.0</sup> -22.4        | 3·10 <sup>-5</sup><br>(4.2σ)   |
| 2013 | 1363                  | 613 <u>+</u> 26    | 46                | 14.3±4.4                  | 38.8±12.0                          | 6·10 <sup>-6</sup><br>(4.9σ)   |
| 2015 | 2056                  | 907±44             | 77                | 23.7 <sup>+6.5</sup> -5.7 | <b>43.5</b> <sup>+12.1</sup> -10.7 | 3.6·10 <sup>-9</sup><br>(5.9σ) |

2010)G. Bellini, et al. Phys. Lett. B 687 (2010) 299 2013)G. Bellini, et al. Phys. Lett. B 722 (2013) 295 2015)M. Agostini, et al, Phys. Rev. D 92, 031101 (2015)



The uranium isotopes found at Oklo strongly resemble those in the spent nuclear fuel generated by today's nuclear power plants.

### Georeactor





- In the core (Herndon) on the core/mantle border (Rusov и de Meijer)
- 5-10 TW will help to explain heating, convection, He3 anomaly, geomegnetism and some other problems.
- Both are critisized by geochemists
- Easy to test with geoneutrinos, Borexino excludes georeactor with 4.5 TW power at 95% C.L.

Forming the Moon from a georeactor at the core-mantle boundary 4.5 Ga

Forming the Moon from terrestrial silicate-rich material (2013) *R.J. de Meijer, V.F. Anisichkin, W. van Westrenen* 



# Another measurement with Borexino?

- We have accumulated another ~1.5 yrs of data and will run at least 1 yr more in solar mode before SOX program (+ ~50% statistics)
- Tuning of the muon-veto cut will save 9% of livetime
- We consider the possibility to perform a spectral fit in all volume (+ ~50%)
- Better understanding of "external" background" (close to the IV walls) is needed

### Signal from <sup>40</sup>K



### **KamLAND**



#### Detector Features

<sup>136</sup>Xe loaded LS was installed in KamLAND (344 kg 90% enriched <sup>136</sup>Xe installed so far)

Physics



#### World best limit on neutrino effective mass

 $\langle m_{etaeta} 
angle < (61-165) \,\, {
m meV}$  prl 117, 082503 (2016)

Continue to use LS volume outside of miniballoon to measure anti-neutrino signals

#### **Current dataset**



Precise understanding of reactor neutrino spectrum enhances geo-neutrino measurement.

#### **Event Rate Time Variation (0.9-2.6 MeV)**



- Backgrounds :

LS purification  $\rightarrow$  non-neutrino backgrounds reduction Earthquake  $\rightarrow$  reactor neutrino reduction

- Constant contribution of geo-neutrino Time information is useful to extract the geo-neutrino signal

### Energy Spectrum (0.9-2.6 MeV)



2016 Preliminary Result

Livetime : 3900.9 days

Candidate : 1130 ev

#### Background Summary

| <sup>9</sup> Li                               | 3.4 ± 0.1    |
|-----------------------------------------------|--------------|
| Accidental                                    | 114.0 ± 0.1  |
| Fast neutron                                  | < 4.0        |
| <sup>13</sup> C(α, <b>n</b> ) <sup>16</sup> O | 205.5 ± 22.6 |
| Reactor $\overline{v}_{e}$                    | 618.9 ± 33.8 |
| Total                                         | 941.8 ± 40.9 |

#### Energy Spectrum, Period 3 (0.9-2.6 MeV)

#### Livetime: 1259.8 days 2016 Preliminary Result



<u>best-fit : Period 3 analysis</u>



### Rate + Shape + Time Analysis



### **Th/U Mass Ratio**

According to geochemical studies, <sup>232</sup>Th is more abundant than <sup>238</sup>U.
 Mass ratio (Th/U) in bulk silicate Earth is expected to be around 3.9.

 Models: 3.58-4.2
 4.2 : Allegre et al. (1986)
 3.76 : Hart & Zindler (1986)

 3.92 : McDonough & Sun (1995)
 3.71 : Lyubetskaya & Korenaga (2007)

 3.89 : Taylor (1980)
 3.62 : Jagoutz et al (1979)

 3.85 : Anderson (2007)
 3.58 : Javoy et al. (2010)

 3.77 : Palm & O'Neil (2003)
 3.58 : Javoy et al. (2010)

Chondrite samples analysis : 1.06-6.42 M

Fall statistics for the meteorites identified and catalogued since 980 A.D.



slide from McDonough, 2015, in Ehime

 Geo-neutrino observed rate can be converted to amount of Th & U assuming homogeneous distribution.
 Independent & direct measurement of entire Earth

### **Th/U Mass Ratio**



2016 Preliminary Result

#### Best fit

**Th/U = 4.1** <sup>+5.5</sup>-3.3 Th/U < 17.0 (90% C.L.)

ref) 2013 paper Th/U < 19 (90% C.L.)

#### We have a sensitivity of Th/U mass ratio of entire Earth.

KamLAND best-fit is consistent with chondrite data and BSE models.

#### ref) chondrite data

Ordinary Chondrites : J. S. Goreva & D. S. Burnett, Meteoritics & Planetary Science 36, 63-74 (2001)

Carbonaceous Chondrites : A. Rocholl & K. P. Jochum, EPSL 117, 265-278 (1993)

Enstatite Chondrites : M. Javoy & E. Kaminski, EPSL 407, 1-8 (2014)

### **Data vs Earth Models**





#### [BSE composition models]

#### Geodynamical

based on balancing mantle viscosity and heat dissipation

#### Geochemical

based on mantle samples compared with chondrites

#### Cosmochemical

based on isotope constraints and chondritic models

#### Geo-neutrino measurements with KamLAND

| Year | Live<br>time,<br>days | Exposure p⋅yr                 | N <sub>cand</sub><br>[0.9-<br>2.6]<br>MeV | N <sub>geo</sub>              | φ <sub>geo</sub><br>×10 <sup>6</sup> cm <sup>-2</sup> s <sup>-1</sup> | P(0)                         |
|------|-----------------------|-------------------------------|-------------------------------------------|-------------------------------|-----------------------------------------------------------------------|------------------------------|
| 2005 | 749.1                 | (7.09±0.35) ×10 <sup>31</sup> | 152                                       | 28.0+15.614.6                 | 5.1 <sup>+3.9</sup> -3.6                                              | 4.6·10 <sup>-2</sup>         |
| 2008 | 1486                  | 2.44×10 <sup>32</sup>         |                                           | 73±27                         | 4.4±1.6                                                               | 4.5·10 <sup>-3</sup>         |
| 2011 | 2135                  | (3.49±0.07)×10 <sup>32</sup>  | 841                                       | 106 <sup>+29</sup> -28        | <b>4.3</b> <sup>+1.2</sup> -1.1                                       | 3-10 <sup>-5</sup><br>(4.2σ) |
| 2013 | 2991                  | (4.90±0.10)×10 <sup>32</sup>  |                                           | 116 <sup>+28</sup> -27        | 3.4±0.8                                                               | <b>2·10</b> <sup>-6</sup>    |
| 2016 | 3901                  | 6.39×10 <sup>32</sup>         | 1130                                      | <b>164</b> <sup>+28</sup> -25 | 3.9+0.7-0.6                                                           | (7.92σ)                      |

2005) Araki T., et al., Nature 436 (2005) 499.
2008) Araki T., et al., Phys. Rev. Lett. 100 (2008) 221803.
2011) Gando A., et al., Nature Geoscience 4 (2011) P.647--651.
2013) Gando A., et al., Phys. Rev. D 88 (2013) 033001
2016) Watanabe H., talk at "Neutrino Research and Thermal Evolution of the Earth"



#### Results from detectors combined

Current status





From the talk by Ondrej Sramek

### Upcoming experiment: SNO+



29 geo-neutrino events per liveyear (in 780 tones LAB) compared with 26 events from reactors in the same energy range

Local Geology around Sudbury maybe the best understood portion of crust in the world

## Jinping

#### **CJPL:** Location



Located in Sichuan, China. 2 hours drive from Xichang airport.

### CJPL: Tunnel View



#### **Detector Concept**

1.5 kton×2 Fiducial for IBD

PMT coverage >70% with self-designed light concentrator

Energy Resolution: 500 p.e.





### Prediction: IBD Events at Jinping

□ 500 p.e. energy resolution

- The calculation of geo neutrino signal will be covered in Sramek's talk.
- Signal/Background ratio > 8 in SER.



|            | Geo-neutrino       |                     |       | Reactor              |     |  |
|------------|--------------------|---------------------|-------|----------------------|-----|--|
|            | $^{238}\mathrm{U}$ | $^{232}\mathrm{Th}$ | Total | $\operatorname{FER}$ | SER |  |
| Rate / TNU | 47.0               | 11.5                | 58.5  | 29.0                 | 7.1 |  |

#### Location of JUNO

| NPP                   | Daya Bay                                                    | Huizhou                                      | Lufeng  | Yangjiar                          | ıg                    |                  | Taisha            | n               |               |
|-----------------------|-------------------------------------------------------------|----------------------------------------------|---------|-----------------------------------|-----------------------|------------------|-------------------|-----------------|---------------|
| Status                | Operational                                                 | Planned                                      | Planned | Under construction                |                       | Under constructi |                   | ructio          | n             |
| Power                 | 17.4 GW                                                     | 17.4 GW                                      | 17.4 GW | 17.4 GV                           | V                     | 1                | 18.4 GV           | N               |               |
| Overbur               | den ~ 700 m                                                 |                                              |         |                                   | by 2                  | 020:             | 26.6 (            | GW              |               |
|                       |                                                             |                                              |         | Previous site ca                  | andidate              |                  |                   |                 | Ì             |
| Kaiping,<br>Jiang Men | Ziecqing                                                    | Guang                                        | Zhou,   |                                   |                       |                  | and l             |                 | <b>1</b><br>4 |
| Guangdon              | Guangdong Province 2.5 h drive Shen Zhen Huizhou Lufeng NPP |                                              |         |                                   |                       |                  |                   |                 |               |
|                       |                                                             | Changeshan<br>Zhongshan<br>Zhong River Ester | i Atton | <sub>s Kong</sub> Daya Bay<br>NPP |                       |                  |                   |                 |               |
|                       |                                                             |                                              | Hong K  | ong                               |                       |                  |                   |                 |               |
|                       | 🥇 53 km 🕻                                                   | Mac                                          | au      | Cores                             | YJ-Cl YJ-C            | 2 YJ-C3          | YJ-C4 Y.          | J-C5 Y.         | J-C6          |
| 53 kn                 | n                                                           | ALC: N                                       | 1       | Power (GW)<br>Baseline (km)       | 2.9 2.9<br>52.75 52.8 | 2.9<br>4 52.42   | 2.9 2<br>52.51 52 | 2.9 3<br>2.12 5 | 2.9<br>2.21   |
| - A                   | Taish                                                       | an NPP                                       |         | Cores                             | TS-C1 TS-C            | 2 TS-C3          | TS-C4 D           | YB I            | HZ            |
| Yangjian              | g NPP                                                       |                                              |         | Power (GW)<br>Baseline (km)       | 4.6 4.6<br>52.76 52.6 | 4.6<br>3 52.32   | 4.6 1<br>52.20 2  | 7.4 1<br>215 2  | 17.4<br>265   |

### JUNO is mupltipurpose detector

"Neutrino physics with JUNO", J.Phys.G 43 (2016) 030401

- Neutrino mass hierarchy study
- Precision measurement of neutrino oscillation parameters
- Supernova bursts and diffuse supernova neutrinos
- Solar neutrinos
- Atmospheric neutrino
- Geoneutrino
- Sterile neutrino
- Nucleon decays
- Neutrinos from DM
- Exotic searches with neutrinos

R.Han, Y.-F. Li, L.Zhan, W.F.McDonough, J.Cao, L.Ludhova

"Potential of geoneutrino measurements at JUNO" Chinese Phys. C, Vol 40, No3 (2016) 033003

V. Strati, M.Baldoncini,I,Callegar, F.Mantovani, W.F.McDonough, B.Ricci,G.Xhixha "Expected geoneutrino signal at JUNO" Progress in Earth and Planetary Science 2, 1 (2015).

#### **Expected antineutrino spectrum**



### **Expected signals**

• Expected total reactor signal

#### **1569± 88 TNU\***

(~90% contribution from Taishan and Yangjiang nuclear power stations) \*1 TNU = 1 event on 10<sup>32</sup> protons an year

- Reactor signal in the geoneutrino energy window [1.8-3.27 MeV]: 351±21 TNU
- Expected geoneutrino signal:  $Stot=39.7^{+6.5}_{-5.2}$  TNU  $S_{LOC}=17.4^{+3.3}_{-2.8}$  TNU (V. Strati, et al.)

# Backgrounds for geo-neutrino measurement

1)Reactor antineutrinos (90% of the total antineutrino signal in geo-nu window):

**Geo/Reactor ratio** 

KL= 0.23 (before reactors shutdown) Borexino=1.8 JUNO=0.11

2)Cosmic muons induced backgrounds, including cosmogenic production of (βn)-decaying isotopes (2000 m.w.e.)

 3)Internal radioactive contamination: accidental coincidences, (αn) reactions





#### **GeoNu/Backround depends on** the thermal power of 2 reactors



### **Summary of expected rates**

| Source                           | [1.8-9.0] MeV<br>ev/yr | [1.8-3.3] MeV<br>ev/year | Uncertainty            |
|----------------------------------|------------------------|--------------------------|------------------------|
| geo                              | 408                    | 406                      |                        |
| reactor                          | 16100                  | 3653                     | ±2.8%(rate)±1%(shape)  |
| <sup>8</sup> Li/ <sup>8</sup> He | 657                    | 105                      | ±20%(rate)±10%(shape)  |
| fast n                           | 36.5                   | 7.7                      | ±100%(rate)±20%(shape) |
| αn                               | 18.2                   | 12.2                     | ±50%(rate)±50%(shape)  |
| accidental                       | 401                    | 348                      | ±1%(rate)              |

20t->FV(R<17.2m) 18.35t or 12.85-10<sup>32</sup> protons  $\epsilon$ =80% detection efficiency assumed in calculations acrylic vessel (<sup>238</sup>U: 10 ppt, <sup>232</sup>Th: 10 ppt) LS: 10<sup>-15</sup> g/g <sup>238</sup>U/<sup>232</sup>Th

### Reactor spectrum: Daya Bay

F. P. An, et al., "Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay Experiment", arXiv:1610.04802v1 [hep-ex] 16 Oct 2016

1230 days >2.5 10<sup>6</sup> antineutrino events Near detectors 350-600 m



### Reactor spectrum

Y.J. Ko, et al., "A sterile neutrino search at NEOS Experiment" arXiv: 1610.05134v1 [hep-ex] 17 Oct 2016

24 m from reactor R(E)=5% @ 1 MeV 1965 ev/day 46 days reactor OFF 180 days reactor ON Refers to F. P. An et al. (Daya Bay), (2016), arXiv:1607.05378 [hep-ex] (621 days of data)

The differences between the fission fractions for the NEOS data and the ones for Daya Bay are taken into account and small corrections are made using the H-M flux model.



#### Geoneutrino signal extraction precision fixed M(Th)/M(U)=3.9



Fig. from R.Han, et al. In JUNO publication the sensitivity was estimated as 18% for 1 yr with -4% syst.bias

#### Geoneutrino signal extraction precision free Th and U components



| 1  | $0.96 \pm 0.17$ | $1.02\pm0.32$ | $0.83 \pm 0.60$ |
|----|-----------------|---------------|-----------------|
| 3  | $0.96 \pm 0.10$ | $1.03\pm0.20$ | $0.80\pm0.38$   |
| 5  | $0.96 \pm 0.08$ | $1.03\pm0.16$ | $0.80\pm0.28$   |
| 10 | $0.96 \pm 0.06$ | $1.03\pm0.11$ | $0.80\pm0.19$   |

#### **U/Th ratio reconstruction**



Distribution of the ratio reconstructed-to-generated U/Th ratio for 1 (blue line) and 10 (red line) years of lifetime after cuts. The simulations resulting in zero Th contribution are not plot here (fig. from JUNO publication).

### **Radiogenic heat**



### Signal from the mantle

Type equation here.Can be extracted from the measurement if crust contribution is known

#### R(Mantle)=R(Geo, measured)-R(Crust, predicted)

Current prediction (V. Strati, et al.) for the R(Crust) has 18% uncertainty – blue line in the plot

Red line : 8% crust contribution knowledge (KamLAND level)



$$\Delta N_M = \sqrt{(\varepsilon_{Geo} N_{Geo})^2 + (\varepsilon_C N_C)^2 + N_C}$$

$$\varepsilon_{M} = \frac{1}{1 - r_{C}} \sqrt{(\varepsilon_{Geo})^{2} + (\varepsilon_{C}r_{C})^{2} + \frac{r_{C}}{N_{Geo}}}$$
$$r_{C} \equiv \frac{N_{C}}{N_{Geo}} \qquad \varepsilon \equiv \frac{\Delta N}{N}$$

#### **Importance of local contribution prediction**



local (<500 km) crust contributes 50% of geoneutrino signal

### Directionality?

- The average forward shift of neutrons in the direction of incoming antineutrinos have been observed by reactor experiments (i.e. by CHOOZ).
- The basic idea is to search for the small statistical displacement of the capture vertex of the neutron with respect to the vertex of the prompt positron event.
- The neutron from the inverse beta decay of geoneutrino carries energy up to tens of keV and is emitted in a relatively narrow range (below ~ 55 degrees) of angles around the incoming antineutrino. The average forward displacement of the neutron capture vertex is about 1.7 cm, as observed by CHOOZ for reactor neutrinos, while the spread due to neutron drifting is about 10 cm.
- Given the small displacement (~1.7 cm) and the large intrinsic smearing (~25 cm), the direction of the reconstructed antineutrino is only meaningful statistically and needs large statistics. Because the direction to the reactors in JUNO is known, it looks promising exploiting the fit of displacement distribution with predicted separate distributions from geo and reactor antineutrinos in conjunction with the spectral fit. An attempt to separate the crust and mantle geoneutrino components could be made. Both tasks need extensive MC studies.

## Geoneutrino flux prediction

at 5 detectors



From the talk by Ondrej Sramek

#### Geoneutrino flux prediction at 5 detectors

|                                    | Rad. heat<br>TW | KamLAND<br>TNU            | JUNO<br>TNU   | Borexino<br>TNU            | SNO+<br>TNU                | Jinping<br>TNU             |
|------------------------------------|-----------------|---------------------------|---------------|----------------------------|----------------------------|----------------------------|
| Total flux                         | 20.4            | 34.8 +4.2_4.0             | 38.9 +4.8_4.5 | 41.4 +5.1_4.8              | 44.2 +5.3_5.1              | 58.5 +7.4-7.2              |
| Mantle<br>(DM + EM)                |                 | 8.3 +2.5 -2.7             | 8.2 +2.5_2.7  | 8.2 +2.5_2.7               | 8.2 +2.5_2.7               | 8.1 +2.5_2.7               |
| Lithosphere<br>(Crust + CLM)       | 8.2             | 26.5 <sup>+4.3</sup> -3.9 | 30.6 +4.9_4.5 | 33.2 <sup>+5.3</sup> _4.9  | 36.0 <sup>+5.6</sup> _5.2  | 50.4 + <sup>7.8</sup> -7.6 |
| Crust                              | 7.4             | 24.2 ± 3.5                | 28.1 ± 4.1    | 30.6 ± 4.5                 | 33.3 ± 4.8                 | 47.7 ± 7.2                 |
| <b>Crust</b><br>Huang et al. 2013  | 6.8             | 20.6 +4.0_3.5             |               | 29.0 + <sup>6.0</sup> -5.0 | 34.0 + <sup>6.3</sup> -5.7 |                            |
| <b>Crust</b><br>Huang et al. 2014  |                 |                           |               |                            | 30.7 +6.0_4.2              |                            |
| <b>Crust</b><br>Strati et al. 2015 |                 |                           | 28.2 +5.2_4.5 |                            |                            |                            |

Comparison to previous studies

From the talk by Ondrej Sramek



Bull et al 2009, after Ritsema et al 1999

Seismically slow "red" regions in the deep mantle

3-D structure of enriched mantle?



#### Geoneutrino flux from mantle with enriched "piles"

### **Large Scale Projects**

#### LENA: 50 kton



#### Hanohano: 10 kton

Extracting mantle contribution is very important from the geophysical point of view. The combination of data from multiple sites and data from an oceanic experiment would provide valuable information.



Hanohano (~10 kt deep ocean detector)

~100 geonu events/yr

~1500 geonu events/yr

### Summary

- Borex: 23.7<sup>+6.5</sup>-5.7 ev (~25%; P(0) excluded
   @5.9σ)
- KL : 164<sup>+28</sup>-25 ev (17%; P(0) excluded @7.9σ)
- Mantle signal:

BRX: 20.9<sup>+15.1</sup>-10.3 TNU; P(0)<0.02 KL : 8.2<sup>+6.6</sup>-6.0 TNU

• KamLand: Th/U ratio:

M(Th)/M(U)=4.1<sup>+5.5</sup>-3.3

### Future

 JUNO represents a new opportunity to measure geoneutrinos, recording of 300 to 500 geoneutrino interactions per year. In approximately six months JUNO would match the present world sample of recorded geoneutrino interactions, which is less than 150 events. **Experiment:** events/yr

| • | <b>KL</b> : | 14  |
|---|-------------|-----|
| • | BRX :       | 4.2 |
| • | SNO+ :      | 20  |
| • | Jinping :   | 100 |
| • | JUNO :      | 400 |

- Using a well constrained estimate of the reactor signal and reasonable estimates of the non-antineutrino sources, the conclusion is that geoneutrinos are indeed observable at JUNO.
- Maximizing the precision of the mantle geoneutrino measurement at JUNO requires detailed knowledge of the uranium and thorium content in the crust within several hundreds of kilometers to JUNO.
- The statistical power of the geoneutrino signal at JUNO enables a measurement of the thorium to uranium ratio, which provides valuable insight to the Earth's origin and evolution.