L1 Performance

Plans for 2017 commissioning

Takashi MATSUSHITA

Institute of High Energy Physics Austrian Academy of Sciences

Tuesday 24th January 2017

CMS Run & DPG Commissioning Workshop

- Brand-new L1 trigger system hardware, software, databases for challenging conditions: increased luminosity, centre-of-mass energy, pileup
 - Muon system: data are fed from muon detector systems to regional track finders for high resolution muon trigger
 - Calorimeter system: data from single event are processed with one FPGA
 - Global trigger: extendable for more conditions and more sophisticated quantities by adding resources
- Flexible and maintainable system for evolving CMS physics programme

L1 Trigger performance in 2016

Calorimeter system: $e\gamma$, τ , jet, missing- E_T

EG20,30,40

MET40,60,80,100,120

Calorimeter trigger uses pileup mitigation

L1 Trigger performance in 2016

Muon system

- Three muon track finders for different η regions
 - Barrel: $|\eta| < 0.83$
 - Overlap: 0.83 $< |\eta| < 1.24$
 - Endcap: 1.24 $< |\eta|$
- Global muon trigger receives muon tracks from regional finders, sorts by $p_T/{\rm quality}$ and cancels duplicates

menu

- Thirteen revisions of pp L1 Menu in 2016
 - Started with 201 algorithms, ended with 267
 - Many threshold updates for increasing luminosity and calibration change
 - New MinBias HF triggers in v3 menu
 - Test introduction of new invariant mass triggers in v8 menu
- Three revisions of pPb L1 Menu in 2016
 - New Calorimeter Tower counting algorithm
 - Started with 171 algorithms, ended with 206
- Proved flexibility of the system communication with TSG important
- Online DQM covering all the subsystems, starting from scratch
 - plots with emulation in most of the subsystems for comparison

- energy sums : 11%
- jet : 9%

Preparation for 2017

• Possible operation scenarios in 2017 (at the last Trigger workshop)

luminosity [10 ³⁴ cm ⁻² s ⁻¹]	pileup	comment	
1.4 and/or 1.6	41-46	low luminosity	
1.7 or 1.8	49-52	main target	
1.9 or 2.0	55-58	ultimate luminosity	
2.2	64	emergency setting	

- · Need to exploit the flexibility of the system further
 - Improve single object triggers
 - revisit parameters and working points for isolation, better calibration etc.
 - Use of cross triggers to mitigate higher thresholds of single object trigger
 - Use of new algorithms
- Initial L1 trigger menu to be delivered by May
 - Introduce new features by mid March
 - Implementation of new algorithms by end of April

• Provisional thresholds for main triggers

Seed	1.8×10^{34}	2.0×10^{34}	2.2×10^{34}
SingleEG	38	40	42
SingleEG $ \eta < 2.1$	36	38	-
SingleIsoEG $ \eta < 2.1$	34	36	-
DoubleEG	25, 12	25, 12	-
SingleMu	22	22	-
SingleMu $ \eta < 2.1$	22	22	-
DoublelsoTau $ \eta < 2.1$	30	33	34
Total- <i>H_T</i>	320	360	380
Missing- E_T	105	115	120
SingleJet	180	180	-
DoubleJet $ \eta < 3.0$	112	112	-
QuadJet $ \eta < 3.0$	50	50	-

- Thresholds will be quite high for 2.2×10³⁴ scenario
- Need help from PAGs to develop cross-trigger and use of new algorithms
 - Invariant mass
 - missing-*E_T* with HF
 - total- E_T with ECAL only

L1 rates in high-pileup run

luminosity of isolated bunches

- Fill 5412 3 isolated bunches with very high-pileup, 2 × 48 bunch trains
- Assume muon rates linearly scale with luminosity
- Use ratio of muon trigger rates of isolated bunches to trains for estimating pileup of isolated bunches
- Pileup of train by "pccLUM15001"

ref: isolated bunch fill 5385

L1 rates in high-pileup run

calorimeter triggers

- Pileup dependence of rates for calorimeter triggers
- Clear OOT pileup effects in energy sum triggers

2017-01-24 L1 Performance T. Matsushita (HEPHY) 11/17

L1 rates in high-pileup run

- Naively expects some dependence on relative position of BX in train
- First bunches in a train show higher rates sizable effects in energy sum triggers
- High-pileup run study ongoing and being used for L1 menu preparation in 2017

Ongoing trigger object improvements in 2017

• eγ

- ECAL TP optimisation of spike killing algorithm
- Optimisation of isolation criteria¹, shape veto, calibration, etc.
- H/E as a function of E_T/η

• μ

- New p_T assignment algorithms in BMTF and EMTF
- Algorithm improvement in OMTF
- ϕ at IP by uGMT

• τ

- Optimisation of isolation criteria¹
- Introduction of shape veto
- Energy sums
 - Missing- E_T with pileup subtraction, better calibration
- jet
 - jet seed threshold optimisation, better calibration

1) multiple isolation working points possible

- Data Tier for L1 Trigger Study
 - μ : Zmu skim RECO (shared with Muon POG)
 - *e*/γ: ZElectron RAW-RECO
 - **τ**: MuTau skim RECO (shared with TAU POG)
 - Working on
 - (Parked) ZeroBias RAW with only trigger FEDs
 - SingleMuon skim for Missing- E_T
- DQM: Use physics objects for turn-on curves etc.
 - Online
 - Automatic check for warnings and errors possibly with sound alarms
 - Complete comparison with emulation
 - Offline
 - Make it available to shifter for offline certification
 - RelVal
 - Development ongoing, possible deployment in end February or soon after

DOCs

- DOC2 monitoring of rates as a function of PU and performance with Online DQM then filling the prompt certification within 24h using express streams
- DOC3 monitoring of performances with offline DQM then fill the run registry for the final certification, also performs release validation with RelVal DQM
- Offline software
 - All L1 offline development available by the end of 2016 (l1t-integration-v89.20) has been merged in CMSSW_9_0_X
 - New development branch available l1t-integration-CMSSW_9_0_0_pre2
 - Validating L1T emulation from DB payloads
 - New algorithm developments will be merged in CMSSW_9_0_X in timely manner

- Up to date development status in 2017 is available at;
 - Trello https://trello.com/b/d47BysEC/timeline-for-2017
- L1 DPG requests/issues are tracked at;
 - JIRA https://its.cern.ch/jira/projects/CMSLITDPG/summary
 - L1 menu requests
 - L1 menu deployment
 - L1 object performance improvement
 - L1 object performance issues
 - New algorithm development

- Will exploit flexibility of the system to cope with higher luminosity expected in 2017
- Try to keep thresholds low for CMS physics programme
- Need help from POGs and PAGs to develop level-1 menu
- Will detect possible problems early with improved DQM

