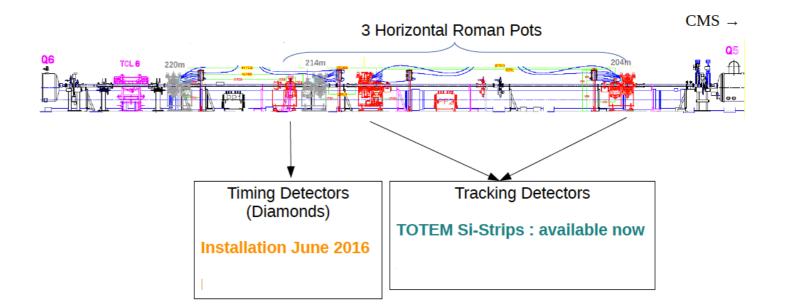


CT-PPS OPERATIONS

Jonathan Hollar (LIP)

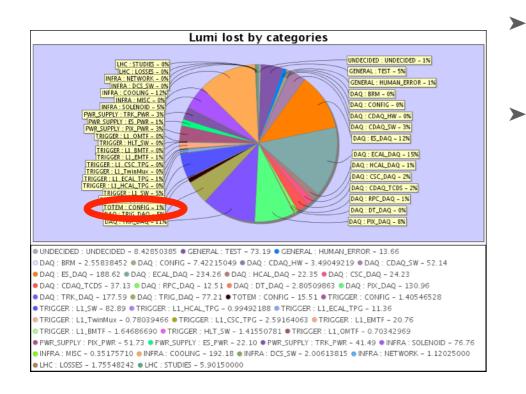
LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTICULAS

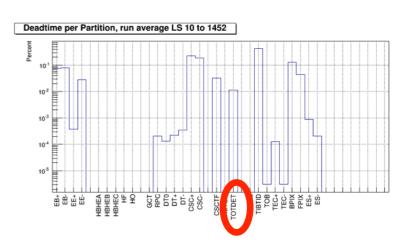

2016

• •

.

OVERVIEW: 2016 CONFIGURATION

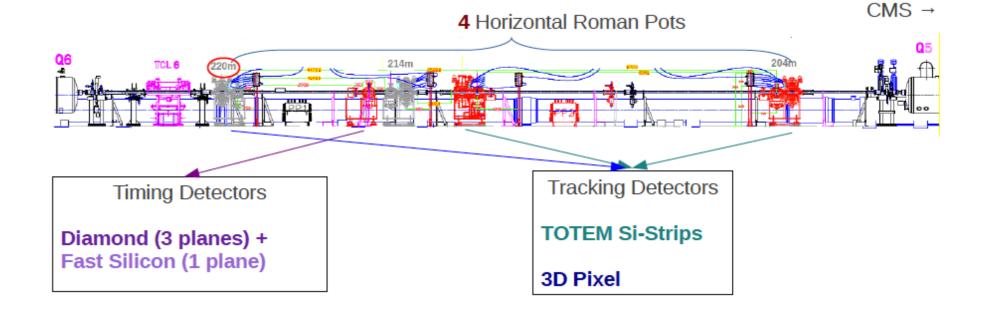

- Reminder of 2016 CT-PPS configuration
 - ► 3 RP stations on each arm
 - 2 with (non-radiation hard)
 Si-strip tracking detectors, 1 with diamond timing detectors


- ► Collected ~15.3fb⁻¹ with Si-strip detectors, 2.5fb⁻¹ with diamonds+strips
- Compared to original TDR-era plans
 - ► TOTEM Si-strips were used to advance high-luminosity physics data-taking by ~1 year
 - Final LHC optics less favorable than assumed for acceptance at low mass (improved by IP5 bump + crossing angle change after TS2)

2016 OPERATIONS, DOWNTIME/DEADTIME

> No problems related to operation of RP's 15σ from the beam at highest luminosities

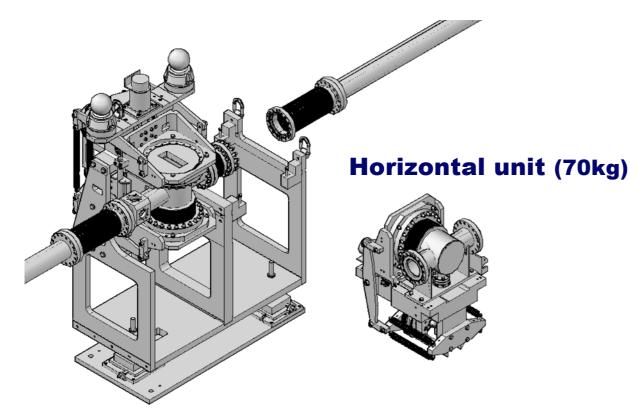
- Period in Summer when CT-PPS was out due to focus on debugging diamonds readout, rad-damage to Si-strips
- Otherwise high data-taking efficiency
 - <1% of downtime assigned to CT-PPS ("TOTEM_CONFIG")
 - ► June 29: HV discharge->LV trip
 - ► October 9: Strip FED578 sync-loss error
 - October 23-26: Diamond FED583 sync-loss errors (4x in 90:35 hours)
- Average deadtime over highest lumi fills ~0.01% (per WBM FMM deadtime plots)
 - Most of that from diamonds
 - Si-strips negligible after zero-suppression implemented in May

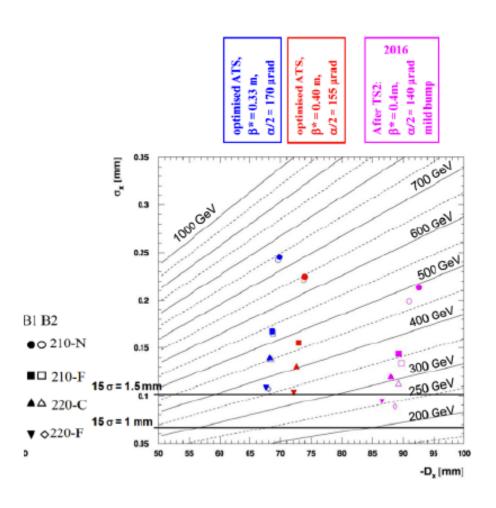

EYETS->2017

MAIN AREAS OF WORK

- ► Tunnel infrastructure
 - Refurbishment of 4th Roman Pot station for high-luminosity running
- Partial/staged installation of new detectors
 - radiation hard 3D pixel tracking (1 station)
 - ► fast silicon timing (1 plane of 1 station)
- Consolidation/improvements to timing DAQ+readout chain
 - Front-end hardware/firmware
 - Complete reference timing systems (RF + optical)

2017 CONFIGURATION (OVERVIEW)

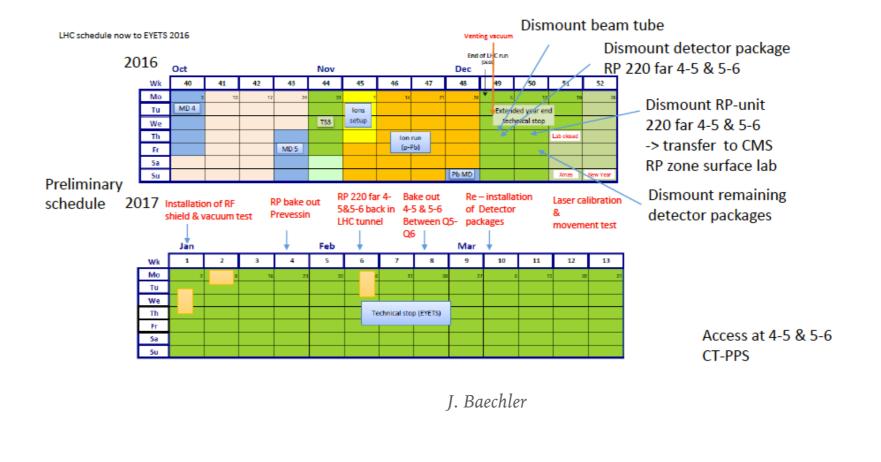

- 4th RP station will be equipped at 220m
- 1 station on each arm will house new pixel tracking detectors



- ► 2 stations will still have Si-strips tracking (as in 2016) at startup
 - ► LHC will do alignment/loss map fills at the beginning of the intensity ramp
 - ► => important to have at least 1 tracking detector guaranteed to work on "day 1"
- ► 1 station of timing detectors (as in 2016)
 - ► 3 planes of diamonds + 1 plane of fast silicon

INFRASTRUCTURE(I)

- Main operation: equipping a 4th Roman Pot station at 220m with RF shielding to operate at high-luminosity
 - For a given optics, station farthest from P5 has best acceptance at low masses (shown for ATS optics)



- Requires breaking vacuum to remove RP unit
 - => removal and reinstallation of *all* detector packages before bake-out

INFRASTRUCTURE (II)

- Work proceeding according to schedule
 - ► 220m RP removed
 - ► RF shielding added
 - Bakeout tests in
 Prevessin in
 preparation for reinstallation

- Additional infrastructure improvement to split cooling loops between tracking & timing detectors
 - > -> more flexibility to raise HV for radiation damaged Si-strips

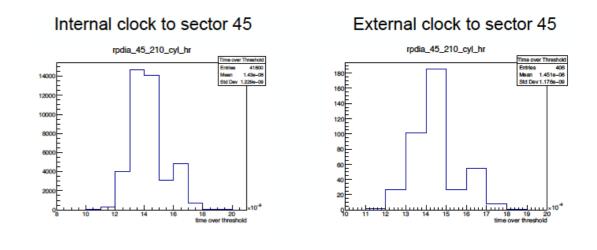
TIMING DETECTORS: SENSORS/HV

- Successfully recorded ~2.5fb⁻¹ with diamond timing detectors in late 2016 (see Valentina's talk)
- ► Some issues with HV trips
 - Beam separation tests indicated likely not related to diamond detectors themselves -> confirmed in high-radiation test campaign at CERN IRRAD facility
 - Further tests point to feedthrough, hybrid board connectors possibly discharging, mitigation work ongoing
- For 2017 aim to insert 1 plane of fast silicon together with 3 planes of diamonds
 - Fast Si has reached ~30ps/plane in testbeams (1st generation of diamond detectors installed in 2016 ~90ps/plane)
 - No significant change to DAQ/backend readout needed

TIMING DETECTORS: READOUT HW/FW

- Version2 of front-end "digitizer board" in final production for use in tunnel
 - Main change relevant for CT-PPS: uniform distribution of high-precision reference clock to all components on board

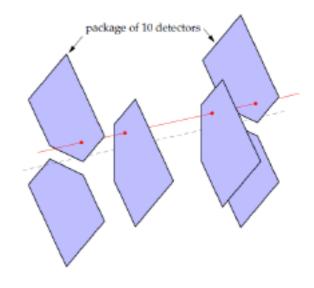
Digitizer board v1


- ► Firmware to be adapted for v2 of board
 - ► Several other FW improvements based on 2016 experience
 - improved handling of clock changes (problems switching between local <->LHC clock for cosmics during interfill in 2016)
 - Improved error handling
 - POH output option for future uTCA readout

TIMING DETECTORS: ONLINE SW AND READOUT TESTS

- ► Online SW
 - ► Highest priority: remote firmware uploads via FEC -> CCU25 ring
 - Major limitation in 2016 commissioning campaign for diamonds difficult tunnel access required for (multiple) minor FW updates
 - Status: successfully tested+validated in lab in December, to be re-verified with full system in tunnel
 - Automating reconfiguration of HPTDC/digitizer board components: final tests of XDAQ-L1 FM integration ongoing
 - Development of configuration database for HPTDC settings
- New DAQ test system being assembled for more realistic tests with diamond detector packages

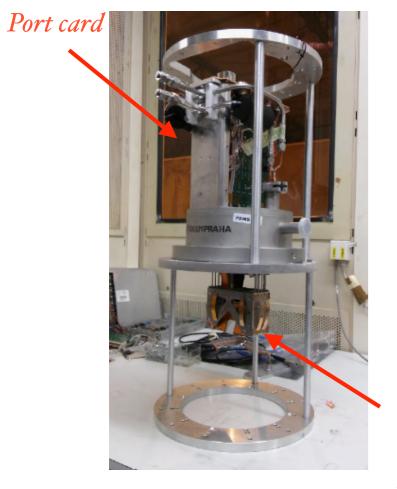
TIMING DETECTORS: REFERENCE CLOCK


- Precision timing detectors require precise reference clock
 - ► Will be possible to fully use in 2017 with digitizer board v2
- ► Two systems available with sub-ps jitter
 - ► Optical (based on FAIR system)
 - ► Installation of components in S2 to be completed in EYETS
 - ► RF (based on SLAC-LCLS system)
 - Installed and limited MiniDAQ tests done in 2016
 - HV supplies in tunnel died, moving to alternative power supplies in alcove

F. Rebassoo

TRACKING: SI-STRIPS

- Minimal changes from 2016
- 2 additional VME FED's requested to readout strips in vertical RP's
 - These are not used in normal highluminosity running (physics protons are ~all bent into the horizontal stations)
 - Needed in alignment/loss map fills to determine absolute alignment (see DPG talk for details)
 - In 2016 was done using TOTEM standalone DAQ

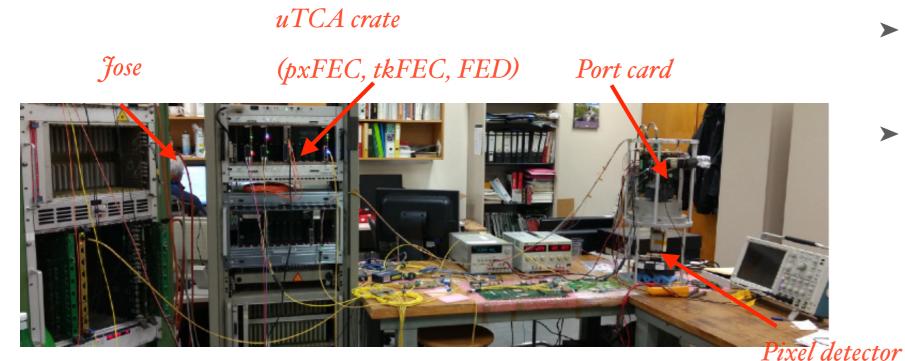


TRACKING: PIXELS

- Status of production
 - Enough good modules produced for installation of 1 station on each arm (17 2x2, 18 3x2)
 - ► 2 complete "champignon" mechanical assemblies complete+tested
 - All optical components available (previously a potential issue with POH)
 - Version1 of front-end port card available, version2 sent for production
- > 3D pixels irradiated up to expectation for $\sim 100 \text{fb}^{-1}$ (eq. $5 \times 10^{15} \text{ p/cm}^2$)
 - No inefficiency, but some slewing of signal pulses into adjacent BX due to highly non-uniform irradiation
 - Exploring alternate readout schemes to compensate

TRACKING: PIXELS INTEGRATION

Series of above-ground integration tests in December 2016



Pixel detector package

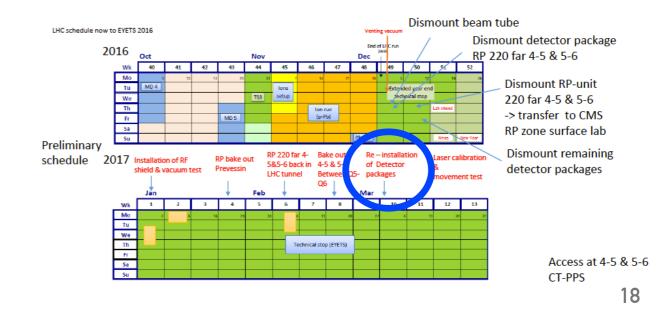
- Mechanical + cooling tests in H8 beamline of SPS
 - Pixel detector packages integrated in full mockup of tunnel system with Roman Pots + cooling
 - Tests OK minor changes to mechanical constraints & temperature sensors implemented

E. Robutti

TRACKING: PIXELS DAQ AND INSTALLATION

E. Robutti/F. Ravera

- DAQ/readout chain tests
 + validation ongoing
- Using same backend + SW as phase-1 pixels
 - FC7 uTCA FED (1), tkFEC, pxFEC
 - PixelSupervisor XDAQ
 SW extended to RPIX
 naming/numbering
 scheme


- ► (1) uTCA crate installed in P5 since 2016
- Plan final round of integration tests in H8 testbeam area in February, including DAQ (possibly with v1 of port card)

package

► =>Qualify 2 complete packages for installation

COMMISSIONING

- ► Basic readout chain for pixels, updated timing, can be tested without beam
 - ► Readiness for high-rate pixels readout depends on phase1 uTCA FED developments
- Understanding response, timing scans, etc. requires stable beams (cosmics not very useful due to small area and perpendicular orientation of detectors, RP not inserted w/o stable beams)
 - Pixels will be in a separate (uTCA) partition from diamonds/strips -> more flexibility to run pixels in MiniDAQ without removing other detectors from global
- With new optics, expect LHC will start RP insertions with an extra safety margin, as in 2016 startup
- NB. Due to need for bakeout, detectors likely to be (re-)installed in tunnel only after MWGR#2

SUMMARY

 CT-PPS successfully took ~15fb⁻¹ of physics data in 2016, a year ahead of original plan

.

- Several upgrades/additions in progress during EYETS
 - Conversion of 4th RP station proceeding according to schedule
 - ► 1 station/arm of 3D pixels and 1 plane of fast silicon-timing
 - Tight schedule but no showstoppers
- ► Also work ongoing to improve operations with existing detectors used in 2016
 - Timing detector readout (firmware, digitizer board, remote programming)
 - Integrated readout option for vertical RP's for alignment runs
 - Reference timing system