

ECAL Performance and calibration: plans for 2017 commissioning

24th January 2017

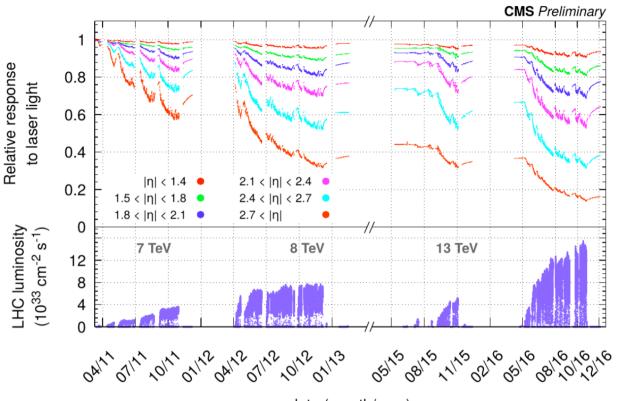
Alessio Ghezzi (Universita' Milano-Bicocca)

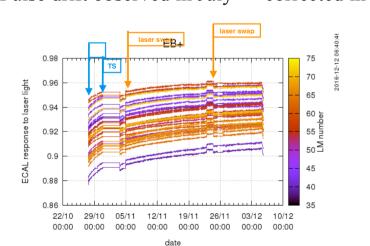
Andrea Massironi (Northeastern University)

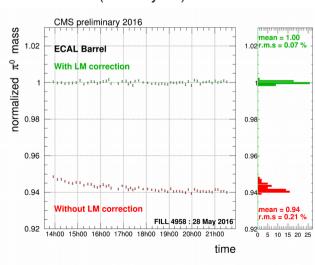
CMS Run & DPG Commissioning Workshop https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=12412

ECAL: 2016 and beyond

- 2016 summary
- Conditions and Legacy ReReco
- Preparation for 2017






2016 running from ECAL DPG perspective

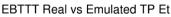
- **Prompt Calibration Loop** (PCL): transparency correction
- Need of (thanks to) continuous monitor by the operators
 - We are able to detect problems and intervene within 48 hours
 - Possible pause of prompt reco in case of issues (it happened in 2016)
 - A protocol with AlCa is defined in case of stop of prompt-reco
 - https://indico.cern.ch/event/546412/contributions/22168 14/attachments/1298779/1938097/160627_AlCaDB.pdf
- \blacksquare Corrections monitored also with π^0 and E/p

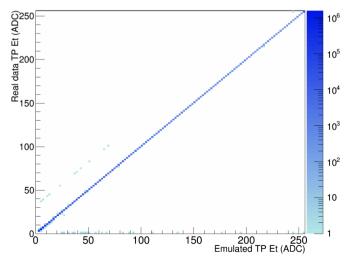
date (month/year)

• PN Test Pulse drift observed in July \rightarrow corrected in 23Sep ReReco

24th January 2017

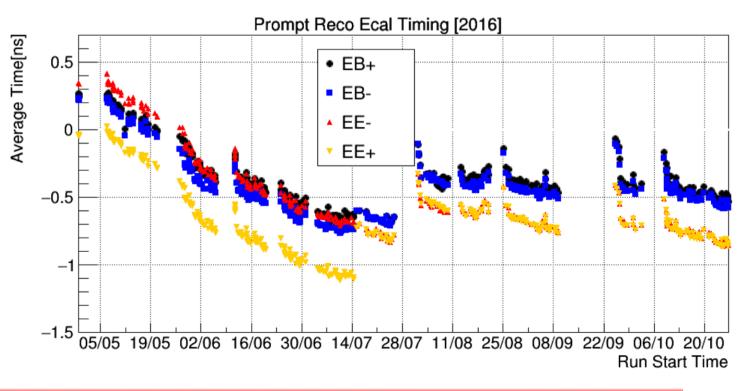
DQM status and improvements


• Introduced **new alarms** to **alert DQM shifter** immediately if an entire supermodule starts to produce invalid data.

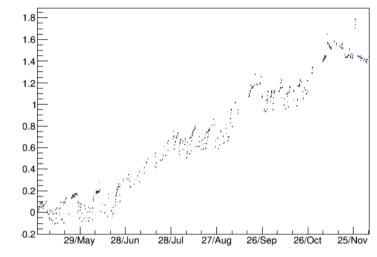

- Added plots to monitor the behaviour of the Trigger Primitives
 - TT Flag plots as requested by the trigger team, who used these plots in the commissioning of a new feature that enables ECAL to mask noisy towers 'on-the-fly' (i.e. without having to reconfigure)
 - Plot of correlation between emulated and observed trigger primitives Et. A mismatch might signify problems in the trigger timing.
- Added plots to monitor changes vs LumiSections
 - Plots of the fraction of channels in each supermodule that are bad, as a function of the lumisection
 - Duplicates of a few key plots that refresh their contents by lumisection rather than accumulating statistics. This helps experts by providing a snapshot of the latest condition of the detector rather than waiting until the next reset
- Added plot of correlation between rechit occupancy in the **positive side** and rechit occupancy in the **negative side** of EB, and in the near and far side of EE. A discrepancy in this plot could indicate potential problems, including, for example, voltage issues in one of the endcaps.

For 2017, work in progress:

• **Timing** plot vs **BX** and vs **LS**, to monitor changes and check LHC time



- Lesson learned from failure scenarios and actions taken
 - Study back in 2010, still valid: https://twiki.cern.ch/twiki/bin/view/CMS/EcalFailureScenarios2010
 - In 2016: < 1% of Lumi lost (https://docs.google.com/document/d/12G7zoRu0brNdm_Odl1OxD4CUHEwGe_D9R1QWNanFLPM/edit)</p>
 - Main failure mode is one or more EB/EE FEDs out of the run
 - Run is BAD
 - One run with missing Trigger Primitives from a single EB FED
 - was considered "good" by L1 DPG, but should be detected quickly and run stopped if it occurs again.
 - Should not keep running in this state
 - We invalidate LS with ~8 Trigger Towers that have data integrity issues due to SEU
 - Ok, if rate remains low
 - **ES** FED issues (few FEDs kept out of the run):
 - Run is GOOD, but careful off-line treatment of ES planes energy \rightarrow ECAL DPG/EGamma



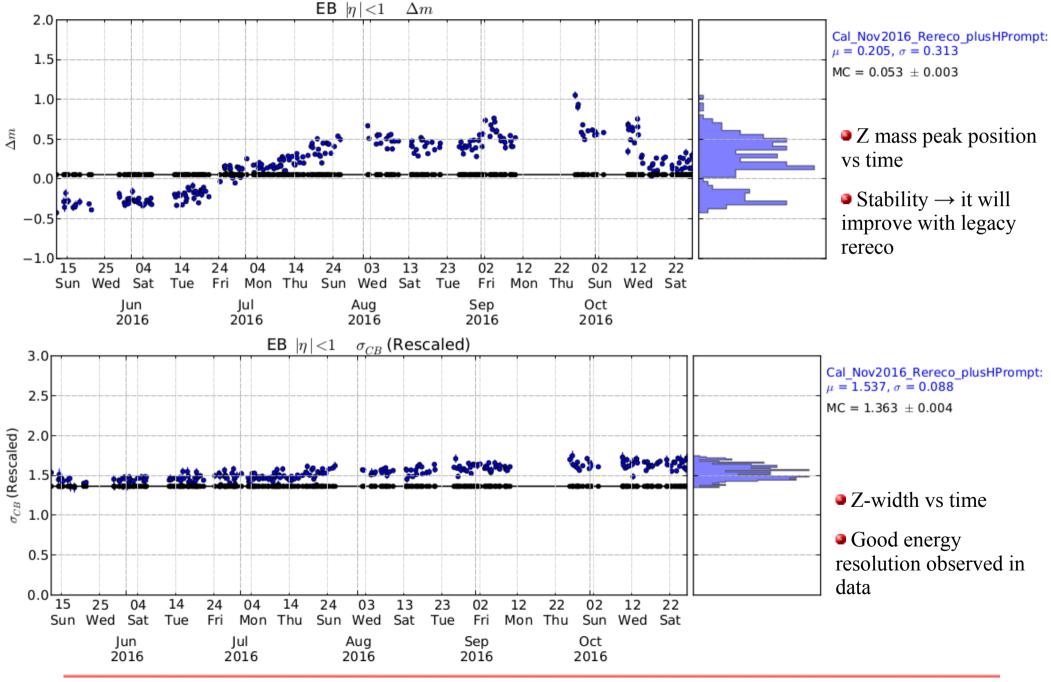
2016 update of conditions

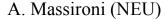
- Regular updates of the conditions:
 - Pedestals
 - Dedicated runs to monitor the pedestals in different gains
 - Pedestals has been seen drifting during time: fast drift during LHC fill and slow drift in the long period
 - Pulse shapes
 - Use of both lone bunch and normal LHC train to extract the pulse shape needed by local reconstruction
- Milestones updates:
 - Timing
 - Time drift observed in data
 → time drift gives energy
 shift: new pulse shapes
 calculated
 - Time tag updated for specific analyses strongly depending on it

EB Pedestal variation

- Milestones updates:
 - Alignment: ECAL and ES
 - Very important at the beginning of data taking, since we "open" the endcaps during YETS → electron ID/trigger
 - Continuous validation during the year to check the stability

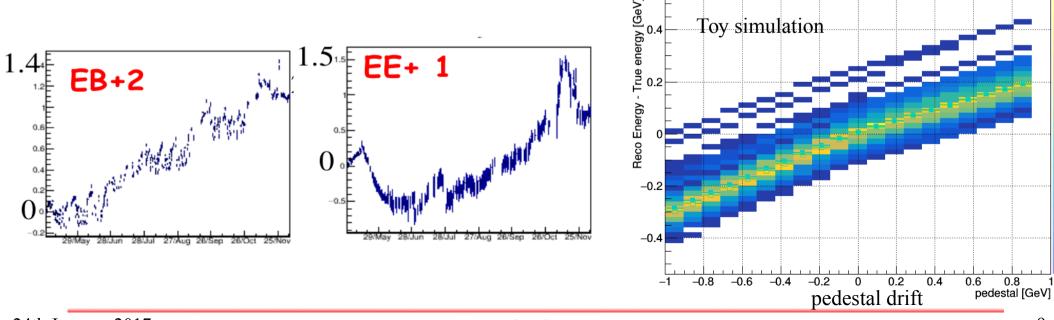
Channel status


- New problematic channels are removed: less than 0.03 % change compared to 2015
- ES channel status


ADC2GeV

- Updated in September
- InterCalibrations (IC)
 - Already very good performances from 2015 IC
 - No update in IC for the prompt
 - They will be updated for Legacy ReReco

Resolution and Stability



Pedestals

- Current local reconstruction (multifit) assumes knowledge of the pedestal:
 - Fit 10 possible energy deposit, one every 25 ns
- Pedestal drift observed in data \rightarrow impact on energy reconstruction: bias in energy
 - In 2016 prompt we corrected for that by means of special runs to measure pedestals
 - For legacy rereco we use pedestal values measured during data-taking
- Studies ongoing for modification of local reconstruction to be less sensitive to pedestal drifts in 2017
 - Different possibilities under investigation
 - CMSSW implementation ready and under validation in terms of performances and robustness



24th January 2017

Gain-switch / slew rate

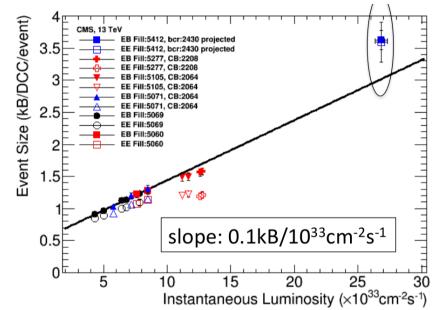
- Non linearity of pre-amp if $\Delta V/\Delta t$ is large, it depends on the shape of the pulse
- Effect: The pulse is distorted → local reconstruction fits distortions as out-of-time pileup → in-time energy reconstructed is reduced → bias in energy
- Fix: different local reconstruction when gain-switch happens (as in Run I, max-amplitude method)
 - Partial fix for re-miniaod, fix available for legacy rereco and for 2017 data-taking
 - Additional changes in local reconstruction are under investigation for 2017

²⁴th January 2017

A. Massironi (NEU)

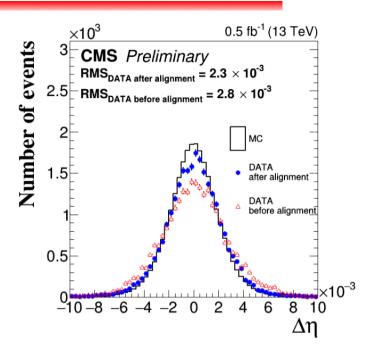
Legacy ReReco

- Status and plan for legacy rereco
 - Pedestals drift corrected with multiple IOV \rightarrow more stable energy reconstruction
 - Time-dependent pedestals or run-dependent pedestals
 - Minor fixes in **laser** corrections
 - Removed quality cut on response (< 0.1), affecting only high η region in EE
 - Channel status update in EE (~ 10 channels)
 - New **pulse shapes** with multiple IOV
 - New ADC2GeV to fix data/MC discrepancies in scale
 - New **ES Intercalibration** Constants
 - New InterCalibrations (IC) and η scale under validation (should improve ECAL energy resolution)
 - IC depends on all aforementioned tags
 - The different workflows started: ϕ -symmetry, π^0/η , electrons
 - Validations are ongoing: comparison of IC constants and optimal combination in Feb prior to AlCa sign off

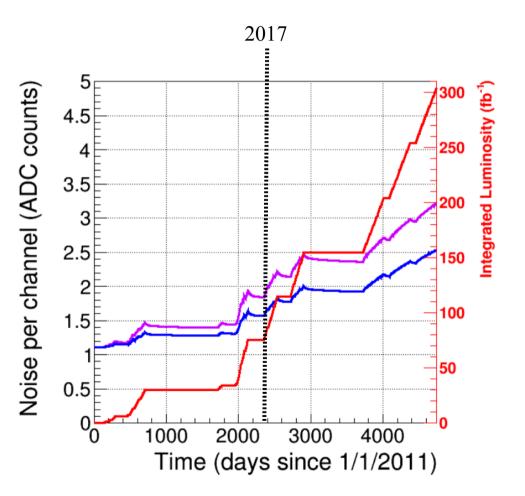


- Local reconstruction updates:
 - Improved multifit to cope with **pedestal** drift
 - Different options under evaluation in terms of performance and stability
 - Increase of pedestal uncertainty in the fit
 - Dynamic pedestal measurement
 - Fix of **slew rate** effect on local reconstruction for EB (EE is un-effected)
 - Different options under evaluation
 - Max-amplitude method
 - Ignore slew-rate affected sample in multifit
 - Technical implementation ready and pull request under validation
- ES software update in case of a dead layer
 - Energy shared in reconstruction between the two layers \rightarrow close contact with EGamma on energy reconstruction
 - Pull request under validation

In preparation for 2017 in P5


- Optimization of Zero Suppression (ZS) and Selective Readout (SR) thresholds
 - Limitation of payload ~ $2kB/event/DCC \rightarrow$ limit reached in high PU in 2016
 - The thresholds will change and will **increase** w.r.t. 2016
 - 2016 Zero Suppression settings:
 - EB = 4.5 ADC ~157.5 MeV
 - EE = 6.5 ADC ~ 390 MeV
 - 2016 Selective Readout settings:
 - High-interest tower = 2.5 GeV
 - Low-interest tower = 1.5 GeV
- Different ZS thresholds option is under study: **2 thresholds logic**
 - It should allow to keep reasonably low thresholds without an increase of payload. First studies are promising and we will soon converge on a set of thresholds
- CMSSW implementation SR logic in PF
 - Currently offline PF rechits thresholds (ZS everywhere) are lower than online ZS
 - Online ZS thresholds are defined in ADC counts \rightarrow sensitive to η /time variation due to transparency loss
 - Currently variation vs time and η **not** propagated to MC (unless run dependent MC is done)!
 - SR in PF will allow to raise PF ZS threshold to be tighter than online, without paying in energy resolution and isolation

What will happen in 2017


- With first hundreds of pb⁻¹
 - Alignment
 - Important for Endcap, since it open now during EYETS
 - Electron ID (Δη and Δφ tracker-matching identification cuts need to be relaxed at the beginning)
- IC will be transported with laser corrections
 - It will be cross checked with first data:
 - π⁰/η
 - Φ -symmetry (interplay with new material upstream, possible changes expected)
 - We don't expect huge updates before the end of 2017
 - to be checked the impact of the new material in front of ECAL: new pixels!

MonteCarlo

- MC samples needed for 2017
 - π^0 for containment corrections with new material budget $\rightarrow \sim 10M$ evts
 - Special MC sample of **photon gun** and **electron gun** with *ideal* ECAL conditions to train regression $\rightarrow \sim 20$ M evts
 - Minimum bias for π^0 selection tuning to improve stream efficiency $\rightarrow \sim 50$ M evts
- For official MC 2017:
 - We will provide tags representative of the average ECAL conditions (noise and transparency) expected during 2017
 - $\eta = 0$
 - η = 1.45

- Prompt Calibration Loop (PCL):
 - Possibility of PCL for **pedestal** update (interplay with decision on/performance of local reconstruction)

- Plans for updating L1/HLT conditions
 - Currently L1/HLT transparency corrections are updated weekly, with a delay of 1 week, with the latest transparency measured
 - Studies ongoing on more **frequent** update and on **extrapolations** (useful in case of long periods without beam to avoid increase in rate at the beginning of data-taking)
 - Automatic-validation may be rediscussed in order to keep the process fast
 - Pedestals
 - In 2016 update of HLT conditions typically synchronous with offline
 - With possibility of de-couple them due to additional check on changes in rate required for HLT conditions
 - For 2017, possible weekly update or in synchronous with transparency

- Calibration **streams** and **rates**
 - Beginning of data-taking
 - Increased rate for π^0 and Φ -symmetry
 - Φ -symmetry $\rightarrow 10 \text{ kHz}$
 - $\pi^0 \rightarrow \text{optimization ongoing}, ~15 \text{ kHz}$
 - Steady-state running condition
 - Φ -symmetry \rightarrow 3 kHz
 - $\pi^0 \rightarrow 7 \text{ kHz}$
 - Re-tuning of thresholds of π^0 to be more efficient
 - Work ongoing on E/γ isolation and ID at L1, different for physics and calibration purposes
- Tier requirements
 - RAWRECO of double electron Zee particularly useful at the beginning of data-taking
 - RAW Data of calibration stream available on disk in T2

Prompt and ReReco updates:

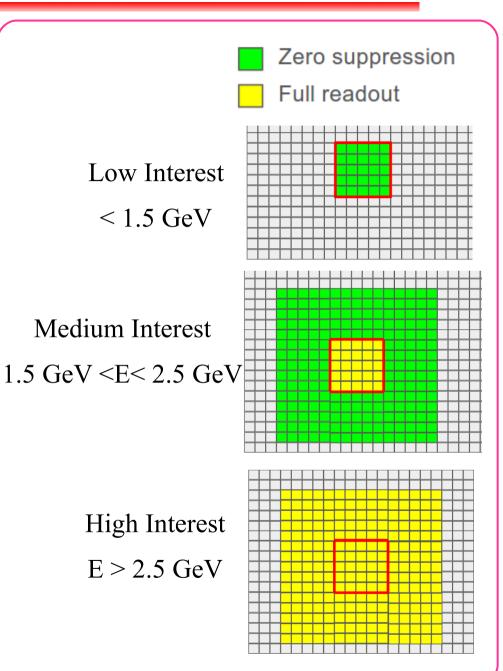
- Lesson from 2016: IC are good from previous year, can be improved only at the end of data-taking
- Legacy ReReco of 2017 should happen at the end of 2017, to fully exploit the ECAL performance

Summary

- The **2016** has been an exciting year
- We had to face some **unexpected challenges**
 - ECAL is a living and evolving detector
 - Most of them have been coped with, thanks to excellent team of people online and offline!
 - Thanks to everyone! PM, TC, RC, Shifters, DQM, DAQ, PFG, MoCa, DPG, ...
- Many lessons learned from 2016
- The final "exam" and the ultimate performances will be delivered in the Legacy ReReco

2017 is now:

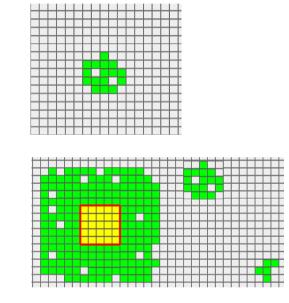
- We fixed/are fixing what we have learned from 2016
- Re-tuning and improvement of online conditions, streams, ... ongoing
- ECAL will continue to successfully produce good data to perform good analyses



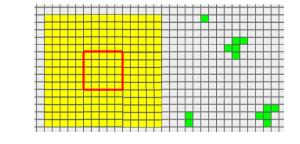
Selective Readout and Zero Suppression

- Tune of online thresholds
 - 75k crystals → we cannot save/read all crystals (Full readout)
 - Limit in payload ~ 2kB/event/DCC
 - Selective Readout (SR) logic
 - Zero suppression: save the crystal if above a threshold (in ADC, 4.5 in EB, 6.5 in EE in 2016)

Zero suppression with lower threshold

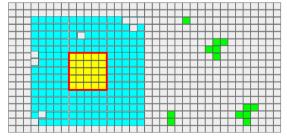

Legend: each point is a crystal

Full readout

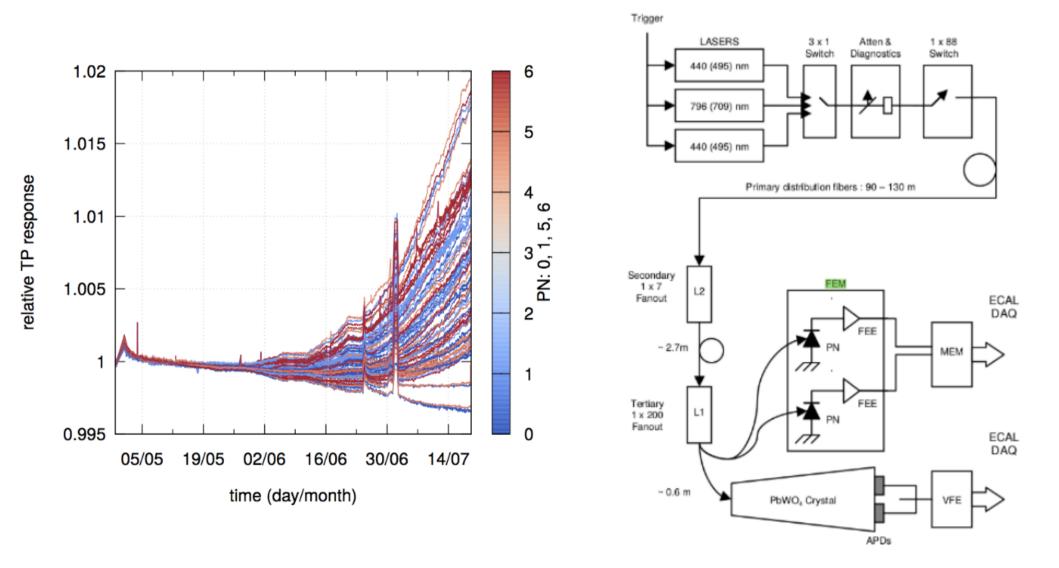

Low Interest < 1.5 GeV

Medium Interest 1.5 GeV <E< 2.5 GeV

High Interest

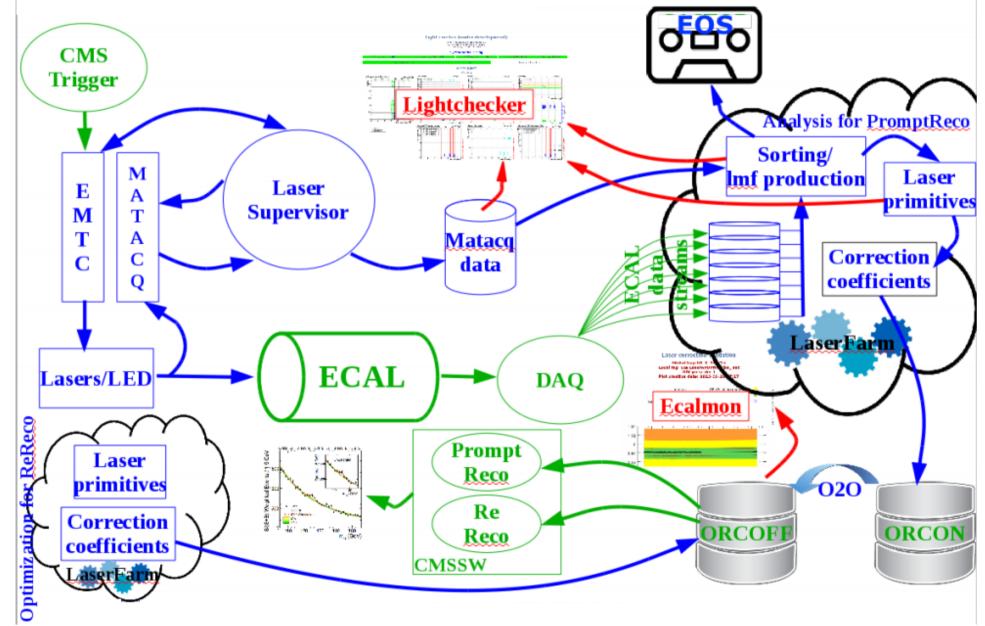

E > 2.5 GeV

With ZS Threshold 2 set to 2/3 ADC counts, we can gain the payload reduction needed for readout


Tuning ongoing

2 thresholds system, for 2017

Laser and PN



Incident/Time	Laser Farm issue Notified by	Who should be notifified	What action should be taken	Phone numbers and emails
<30 hours	ECAL DOC(online) PFG shifter (offline) ->	Laser experts-> ->020	Stop DB Filling (FillCorr) Stop O2O Provide a fix to OMDS	Write to: <u>cms-saclay-</u> <u>laser-</u> <u>monitoring@cern.ch</u> And/or call:77800
30 hours < t < 48hours+rl	Laser experts->	->ECAL DPG ->O2O ->Prompt_reco experts	Stop Db Filling Stop O2O Stop prompt_reco Provide a fix to prompt_v2	Write to CMS ORM And CMS DB on call?
>48 hours +runLength	Laser experts-> Should never happen but if	-> ECAL DPG	New corrections in the offline_tag for Re-reco	

Processing the data

24th January 2017

ECAL Crystals response monitoring

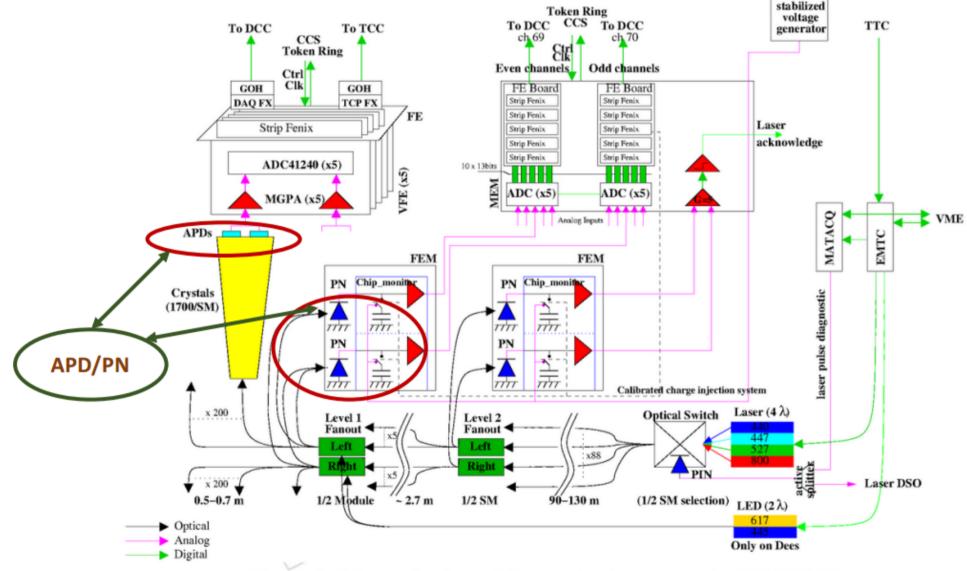
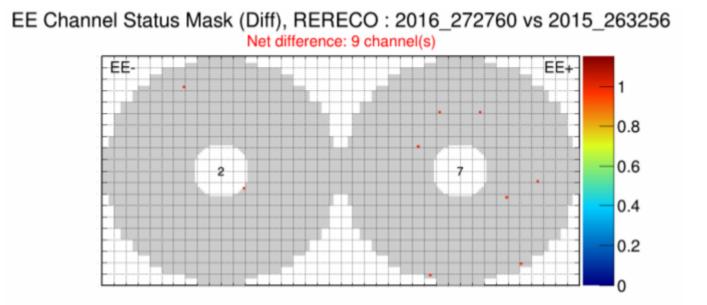
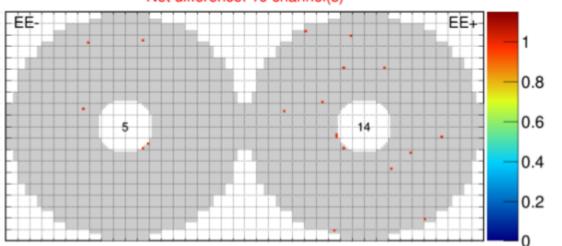



Figure 1: Schematic view of the monitoring system in CMS-ECAL

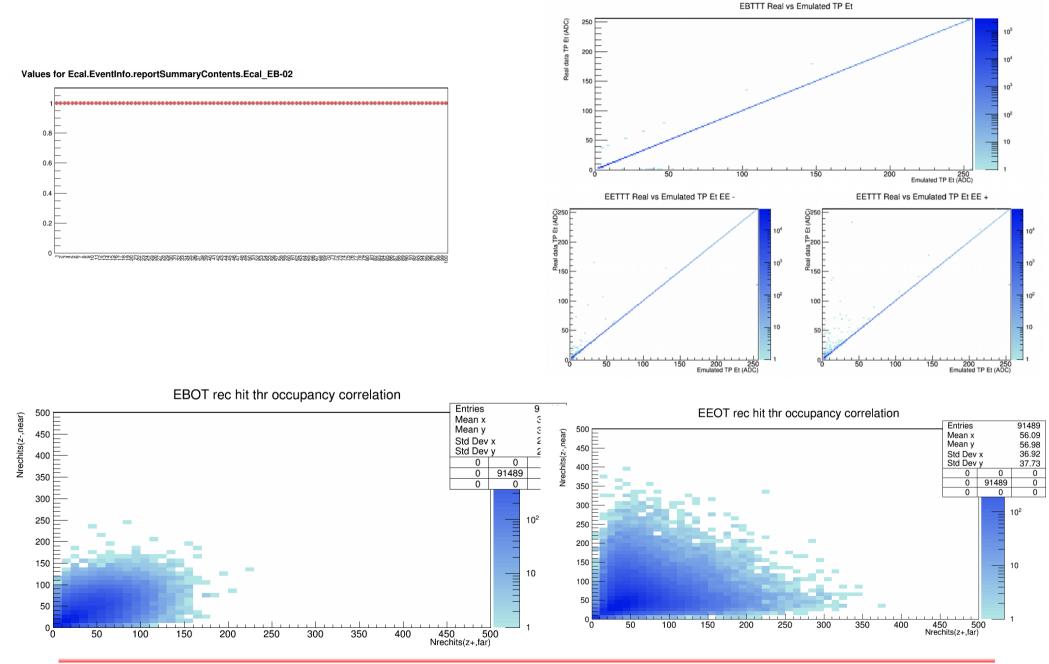


Channel status update for Legacy ReReco

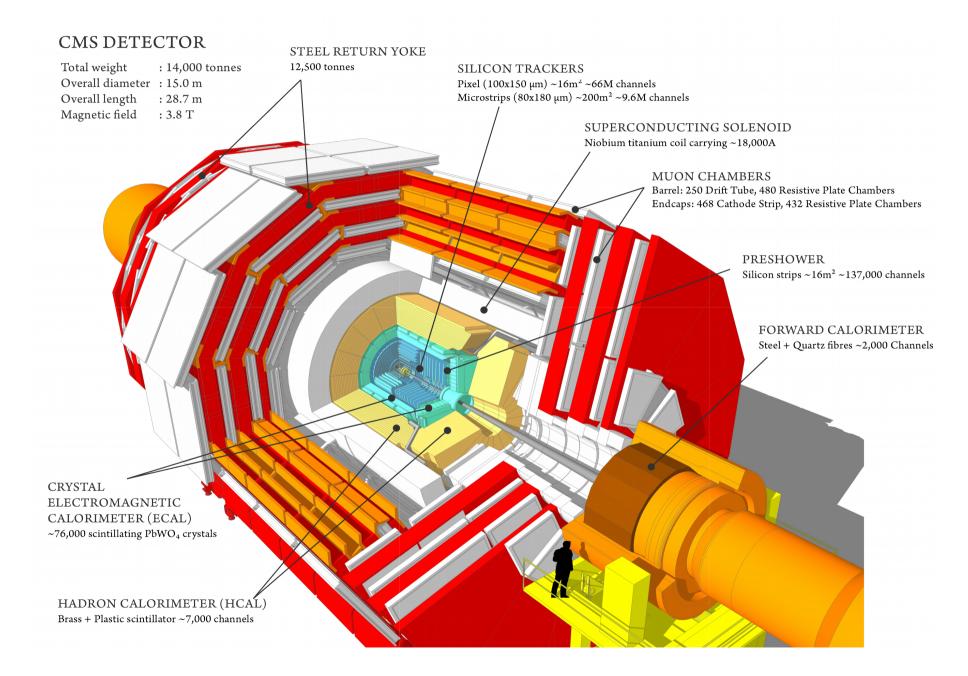
23Sep Rereco

EE Channel Status Mask (Diff), LEGACY RERECO : IOV 272760 vs 263256 Net difference: 19 channel(s)

• See details in Shervin's presentation at AlCa:


https://indico.cern.ch/event/586738/contributions/2397212/attachments/1389985/2117199/AlCaDB-v18.pdf

Record	Tag	Comment
E{B,E,S}AlignmentRcd	NO UPDATE	Up-to-date
EcalTimeCalibConstantsRcd	EcalTimeCalibConstants_Legacy2016_v1	multiple IOVs
EcalLaserAPDPNRatiosRcd	EcalLaserAPDPNRatios_offline_2016pp_legacy	
EcalLaserAlphasRcd	some values being updated	
EcalIntercalibConstantsRcd		in Feb
EcalADCToGeVConstantRcd		in Feb
ESIntercalibConstantsRcd		in Jan
ESEEIntercalibConstantsRcd		in Jan
EcalChannelStatusRcd	EcalChannelStatus_v10_offline	
ESChannelStatusRcd	ESChannelStatus_V03_offline	
EcalPedestalsRcd	currently in PREP being copied to PROD	multi IOV
EcalPulseShapesRcd	EcalPulseShapes_Legacy2016_v1	multi IOV
EcalPulseCovariancesRcd	NO UPDATE	


New plots in DQM

24th January 2017

In the rare case you forgot how CMS/ECAL is

