HCAL Performance and calibration: plans for 2017 commissioning

Federico De Guio (TTU) - Kenichi Hatakeyama (BU) for the HCAL DPG

141

Outline

- HCAL in 2016:
 - pp and HI data taking summary
 - performance in 2016 and conditions for legacy ReReco
- HCAL in 2017
 - open possibilities for detector layouts
 - workflow availability
 - calibration plans
 - reconstruction readiness
- Summary

HCAL in 2016

- Hybrid Photo Detector in HB and HE
- PMT in HF
- 2-3 depths, QIE8
- Pilot systems for both HF (QIE10) and HE (QIE11)

Summary of 2016 data taking: a golden year for HCAL

- Loss due to downtime during pp: ~2%
 - few isolated events, more in Andrea's talk
- Loss due to bad quality:
- pp data taking: ~126 pb⁻¹ out of 37.8 fb⁻¹ (~0.3%)
- HI data taking: ~0,1 nb⁻¹ out of ~90 nb⁻¹ (~0.1%)

collected_by_cms losses_in_hcal

week

CMS

Detector calibration: reminder of methods

- RadDam corrections from laser and collision data
- Channels inter-calibration at the same eta/depth: Phi Simmetry
 - equalizes the channels response wrt each other
 - works for HB, HE, HF
- Absolute scale in HB, HE: Iso Track method
 - uses 50 GeV pions momentum as a reference
- Absolute scale in HF: Z-> ee mass
 - one electron in ECAL, the other in HF
 - check calibration of the response of the deposit in HF

RadDam corrections full 2016

• Measured dependence of the radiation damage with Eta

- Large fluctuation of the measured damage vs phi
- phi dependence in conditions for the first time
- possible explanation: HPD to HPD variation of the photo detection efficiency

Phi symmetry inter-calibration

- Two methods available
 - method of moments
 - iterative method

 ~4% precision (stat+syst) achieved from the comparison of the two methods

Phi dependence of the radiation damage visible with Phi symmetry

Energy scale calibration and validation

- Isotrack method in HBHE:
 - improvement after 30 itr
 - residual structures at few% level
- Zee method in HF:
- the gradual shift of the peak position with time gets levelled after raddam are applied

Summary of conditions for legacy re-reco

- All calibration methods updated with the full 2016 statistics
- Condition tags submitted before Christmas
 - ~4% uniformity achieved
 - ~2% on absolute scale achieved
- Documentation being finalized:
 - https://twiki.cern.ch/twiki/bin/viewauth/CMS/HcalCalibrationGroupRun2
 - Raddam: DN-17-007
 - IsoTrack: DN-16-029
 - PhiSymm: DN-17-006
 - HF calibration: DN-16-026, DN-2017-004
 - HO calibration: DN-16-023

Last iterations with AICa ongoing:

provided a comparison of the latest conditions with Prompt

HCAL in 2017: goodbye Plan36

- The full HE upgraded has been postponed
- In 2016 a heroic effort has been made to make geometry, reco algos, trigger, monitoring ready for the full upgraded scenario
- All the work will be incorporated in a scenario to be used in the future (2018 Era)

50 GeV pion simulation

HCAL in 2017 open possibilities for Phase1 upgrade

- **Plan0**:
 - upgraded HF
 - 2016 configuration for HE

- **Plan1** where 1 indicates a small integer:
 - upgraded HF
 - upgrade one or more HE RBX
 - profit from reduced scale pilot system in 2017 in view of the full upgrade in 2018

information (QIE10) and redundant in energy (charge) measurements (dual-ph anode PMT) ph

Mitigate radiation damage with increased depth segmentation and photon detection efficiency (SiPM photosensor + QIE11 readout)

HCAL in 2017 open possibilities for Phase1 upgrade

- Plan0:
 - upgraded HF
 - 2016 configuration for HE

- **Plan1** where 1 indicates a small integer:
 - upgraded HF
 - upgrade one or more HE RBX
 - profit from reduced scale pilot system in 2017 in view of the full upgrade in 2018

Both have parts in common with the available scenarios, but require extra effort that wasn't foreseen

Plan0 workflow Status: ~ready

- **Geometry**: available with upgraded HF, 2016 HE
- Sequences and Configuration: code ready, PR submitted
- **Conditions**: ready and available —> GT should be produced today
- Can proceed with the integration in 900_pre3
- Backport to 80x also needed
- Allows the first injection of MC samples with a possible 2017 scenario

Plan1 workflow: a mixed configuration to deal with

- Update the reco and make the **upgraded wedges look like the rest of the detector**
- Save extra RecHit collection for monitoring and studies

Plan1 workflow: status of implementation and timescale

- Geometry: code available. can be validated by end of the week
- Reco: need to collapse depths from new wedge into Run2 like layout. ~1 week. needs input from Geometry
- Conditions implementation: ~2 weeks
- Workflow implementation: ~1 week
- TP emulation tested/verified: ~1 week
- MC calibration study of the HE wedge: ~1 week

e Feb

- Want to produce private samples asap to enable downstream consumer to test/study/develop:
 - noise filters

calibration methods JetMET performance physics objects monitoring/validation

Plan1 workflow: outside HCAL

 Main concern: introducing phi-dependent features may impact calibration methods and JetMET (and other high-level objects) performance

- Need to understand the level of tolerance for physics objects when introducing inhomogeneities
 - to be done in parallel to the Plan1 scenario implementation as much as possible
 - use the existing Run2 MC and full upgrade HE MC samples to assess tolerance on energy scale shift and response non-linearity

HF noise filtering: cleaning implemented and tested

- Noise due to **PMT hits**
- Anomalous signals are 2-7 ns early and local to a single anode
- Two handles to reject those:
- TDC time information
- Dual anode response asymmetry
- Strategy implemented thanks to the HF Pilot system

HF calibration: ready for startup, same calib strategy

E(rechit)[GeV] = (Q1 + Q2)[fc] * Gains * RespCorr

- Geometry, reco algos, configuration are all available
- Can keep the same Gain and RespCorr for startup: expect 5% variation
 - Further refinement with collision data
- Same calibration strategy as in 2016:
 - PhiSimmetry for inter-calibration
- CMS-
- Zee events for abs scale

Response of HF+ pilot system channels without in-situ calibration

ieta

HE calibration:

gain measurement from source campaign

- Major source campaign for HE: end Jan - begin March
 - Co60 source testing with SiPM & QIE11 done in H2 in October 2016
- Layer-by-layer measurement to calibrate increased number of depths if needed
- Compare the 2013 and 2017 sourcing data

CMS

Calibration with first collision data

- Phi symmetry: ~50/pb
 - < 0.5% stat precision for HF</p>
 - 1-3% stat precision for HE

- Single track calibration: ~75/pb
 - 5-10% stat precision

- Z->ee: ~70/pb
 - 1% stat precision in most of HF

Readiness and plans for reconstruction: Method 2 improvements

 SiPMs not only eliminate anomalous signals, but also reduce the electronics noise

With a reduced noise it is crucial to: better **understand and implement the contributions to the amplitude** improve the **pulse description**

Readiness and plans for reconstruction: energy scale and resolution

- MC single **pion gun** used (no PU)
- Use **isolated track** selections to compare the energy scale against the momentum
- Scale under control in SiPM simulation
 - pulse description improved
 - bias eliminated
- Comparable SiPM/HPD resolution
- Data/MC improvements from introducing dedicated MC templates ongoing - short term

Monitoring and certification

- Non-disruptive updates will be submitted in order to:
 - monitor the **final implementation** of the detector
 - monitor additional collection from **pilot systems**
- **ROC scope expanded** (bridge between online and offline)
 - Express+Offline+local runs monitoring
 - feedback to P5 and input for final certification
 - new tools for ROC shifters available

- Working on:
 - expanding **trend analysis** for stability monitoring across runs
 - improve instructions/training material

In summary

- HCAL performed great in 2016 thanks to the effort of many from the DPG and Ops teams
- A challenging period ahead of us
 - a new detector (HF) to be recommissioned
 - potentially a mixed detector configuration for HE to deal with

Needs for the commissioning of the calibration workflows: MC samples

- First round of samples submitted early this year with full Phase1 scenario
 - Single Pi gun 50, 100 GeV
 - QCD MC: standard samples + with isotrack filter
 - Single Nu gun
 - DYtoMuMu
- Will be used together with 2016 MC for Plan1 studies
- Will be resubmitted with the final scenario

Recurring Issues

- HF LV communication errors:
 - We experience single event upsets (SEUs) in the HF LV modules. This causes a module to lose communication and go into error (only when there is beam in the machine).
 - There were 14 instances this year.
 - The LV may or may not stay on
 - The fix is typically quick (< ~20 LS): try restoring communication with the module, if it doesn't work power cycle the AC/DC
 - We're studying the correlation of these events with activity in the cavern, and will continue to discuss with CAEN personnel

- µHTR fragility in case of power cycles / shutdowns
 - ~1–2% probability of firmware corruption after a power cycle (we have 144 µHTRs)
 - a few hours time is needed to put the system back in a healthy state after a major intervention
 - will further iterate with µTCA and firmware experts

Calibration of New Depths

We have to provide a response correction for the summed depth but will have finer depth segmentation

d1 = c1 + c2; d2 = c3 + c4 + c5 + c6 $E_{QIE11} = r1' x c1 + r2' x c2$ $E_{QIE8} = r1 x d1$

Calibration procedure would have to determine r1' and r2' such that $E_{QIE11} = E_{QIE8}$

We could start with r1' = r2' = r3'...

Compartment 1 (c1) may age faster than compartment 2 (c2)

Need to use the new calibration procedure

Key ingredients: Online alarms and DQM

- HCAL DQM completely rewritten for 2016 data taking
 - global+local runs monitoring
 - quality monitoring by LS
- The new system demonstrated to be very effective in spotting problems right away
- Framework written having in mind Phase1 upgrade
 - flexible design
 - easy to adapt to different detector layouts
 - different set of coordinates for monitoring
 - detector coordinates, electronics coordinates, etc

Data flow and data quality monitoring

In summary the ROC should:

- Check ongoing data taking [quasi online wf, ~2h delay]
 - inspect collision runs (collision+abort gap events) in online GUI
 - fill the offline RR (express dataset)
- Check prompt reconstruction [offline wf, 48h delay]
 - inspect **continuously** collision runs in offline GUI instead of once a week
 - pre-fill the offline RR (prompt reco dataset)
 - pavel signs off once per week
- Check health check runs [once a day]
 - inspect health check runs in hcal local GUI

HE Gain Calibration Concept

[*] Vladimir Gavrilov

Compare the 2013 and 2017 sourcing data to obtain 2017 Gains

Use 2017 Gains [GeV/fc] and SiPM constants [fC/pe] to derive "Tile constants" [GeV/pe] for several phi

> Gains[GeV/fC] = Tile constant [GeV/pe] / SiPM constant [fC/pe]

Assuming that "Tile constants" depends on eta but not on phi, calculate Gains for all HE channels using mean values of "Tile constant" for the same eta & SiPM constant for a particular channel