Track-Based Muon Alignment: 2016 Alignment and Future Plans

For the Track-Based Muon Alignment group

> CMS Run and DPG Commissioning Workshop 24-26 Jan 2016

TEXAS A&M

UNIVERSITY®

25.Jan.2017

Outline

- Short summary of the Track-Based (TB) muon alignment:
 - → Inputs/outputs of the algorithm
 - \rightarrow The algorithm: muons, tracks and chamber-level residuals
 - → Developing monitoring tools
- The 2016 experience and plans for 2017:
 - → 2016 re-reco
 - \rightarrow Extending the coordinates aligned (DOF, degrees of freedom)
 - → Alignment Position Error (APE)
 - → Physic validation
- Outlooks

TB-alignent inputs/outputs

- TB Muon Alignment inputs:
 - → New Tracker alignment, surface deformation, pixel position, tracker APE
 - → New Global Position Record (GPR)
 - → Initial Muon System Geometry (produced using 2016E data)
- TB Muon Alignment conditions:
 - → Release: CMSSW_8_0_24
 - → Global Tag: 80X_dataRun2_2016LegacyRepro_Candidate_v0
 - → JSON file: Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON_MuonPhys.txt
- TB Muon Alignment output:
 - \rightarrow Muon geometry (DT and CSC):
 - → In DT all coordinates (DOF) are aligned + non-diagonal APE
 - \rightarrow In CSC 3 coordinates are aligned + diagonal APE
- ✤ Time-scale:
 - \rightarrow 4 days for alignment (DT and CSC) + 4-5 days for physic validation

Muon selection

- Refit reconstructed global muons using only tracker information
- Selecting only good muons:
 - → 20 GeV < P_T < 200 GeV
 - → Number of hits in Tracker segment: $n_{hit in TK} > 15$
 - → Impact parameter w.r.t. beam spot position: $D_{xy} < 0.2$
 - → Normalized χ^2 for Tracker segment: $\chi^2/n.d.f. < 10$
- ♦ Number of chambers with hits per track: ≥ 2

- Track-Based: propagate tracker part of muons into Muon System (below we show DTs)
- Muon residual: difference between measured (with hits) and predicted (i.e. propagated from Tracker) position of the muon in the chamber

Residuals as a monitor Tool

- Residual spread is due to scattering. Residual shift is due to misalignment.
- Residuals can be measured as a function of Global coordinates.

Current alignment procedure

• For DT: use Δx and Δy residuals, align local x, y, z, Φ_x , Φ_y and Φ_z

We can extended the alignment to 6 DOF for DT and 3 DOF for CSC

Luca Pernié

Monitoring tools

- We developed special tools for monitoring the alignment quality
- Visualization of the difference between geometries (DT and CSC)
- Residual, occupancy, and correction for each chamber

Displacements from Ideal Geom. MC 74K visualization

Displacements from Ideal Geom. MC 74K visualization

nc DT-1100-111111 SingleMuon MCRyan @TwVapec_REC0_7_4_5_patch3_pt20_v2_FidBSpotFixIdeal_03 - Ideal_DESRUN2_74_V4

Displacements from Idral Geon. MC '4X averaged over homogeneous chambers

mc_DT-1100-111111_SingleMuon_MCRysn_0TvVapec_REC0_7_4_5_patch3_pt20_v2_FidB6potFixIdeal_03 - Ideal_DESRU82_74_V

	wheel	stations	ðx (mm) RMS	ły (mmi RMS	ðç (nm) RAS	δφ _X (nrad) RMS	δφ _y (mrad) EMS	δφ _z (mrai) RMS
	MB+1	MB+2/1	0.065	0.492	0.416	0.141	£110	0.096
		MB+2/2	0.048	0.374	0.385	0.157	£114	0.103
		MB+2/3	0.051	0.501	0.645	0.257	6.171	0.105
		MB+2/4	0.330	0.001	1.685	1.988	3,478	0.286

Luca Pernié

3 DOF: algorithm sensitive to initial misalignment, not possible to define rigorous APE (Alignment Position Error)

6 DOF: algorithm independent from initial misalignment, possibility to define correct APE (including correlation among the coordinates aligned)

- ★ Z coordinate is correlated to X and Y.
 If Z not properly aligned (or biased) → possible effect on X and Y alignment!
- Possibility to define a more rigorous way for evaluating our systematics also thanks to HW alignment:
 - \rightarrow Weak modes and correlations full included in APE

Example 1: Aligning a biased geometry

Input geometry: 2016E geometry, but the z coordinate is smeared of 15 mm

Distributions: difference between the original and the smeared geometry in each coordinate

Example: initial geometry biased

- Input Geometry: 2016E smeared geometry (15 mm on z coordinate)
- Plots: Difference between final geometry the algorithm produce and the original 2016E geometry
- LEFT: 3 DOF aligned (X, Y and ΦZ)

3 DOF

Starting from 2016E SMEARED geom.

- The Z coordinated is fixed
- The fit cannot converge on Y since it very correlated to Z
- Also X is affected since it is correlated to Y and Z (relevant for p_T measurement)

Example: initial geometry biased

- Input Geometry: 2016E smeared geometry (15 mm on z coordinate)
- Plots: Difference between final geometry the algorithm produce and the original 2016E geometry
- LEFT: 3 DOF aligned (X, Y and ΦZ) Right: 6 DOF aligned

3 DOF

6 DOF

Starting from 2016E SMEARED geom. Starting from 2016E SMEARED geom.

Example: initial geometry biased

- No matter the initial geometry, you reach the same level of precision
- * 6 DOF has a weak mode between the Y and Z position:
 - → Such weak mode can be included in APE (see next slides)
 - → Such weak mode do not affect Physics performance, if treated in APE
- ✤ If we start from a perfect geometry 3DOF is better, but if we don't know 6 DOF is safer

6 DOF

6 DOF

Starting from 2016E geom.

Starting from 2016E SMEARED geom.

Luca Pernié

2016 ReReco Geometry, Physic validation (including Alignment Position Error, APE)

Luca Pernié

CSC Alignment

- Final Geometry consistent with the previous one
 - \rightarrow Distribution: difference between our final geometry and the previous one
 - \rightarrow Larger spread in Y (expected, not relevant for physics performance)

CSC Alignment

A M

- Final Geometry consistent with the previous one
 - → Distribution: residual in r Φ vs global Φ for few disks
 - → No need for alignment of the whole disks (CSC has been not opened)

Some disks have no muon in a specific sector (or in few strip of a sector)

Here just few examples

DT Alignment

- Final Geometry consistent with the previous one
 - → Distribution: difference between our final geometry and the previous one
 - → Left: 3 DOF Right: 6 DOF
- Tiny shift in local Y (global Z coordinate)

→ Could be expected since SiStrip geometry has been updated in order to fix the bias seen in the Z mass peak in the very forward rapidity

Alignment Position Error

- Alignment Position Error (APE) can be fully determined using 6 DOF
 - → MINUIT provide the full covariance matrix
 - \rightarrow It includes non diagonal terms that describe weak modes and correlations

- 3DOF do not allow to use precise APE, thus we use asymptotic diagonal APE
- Using 6 DOF method and keep the same APE as 3
 DOF worsen the distribution
- Using 6 DOF and APE from Covariance Matrix give the best χ² distribution

Physic validation

- We reconstruct muons using 2 different geometries:
 - → Geometry obtained using 3 DOF + diagonal APE
 - → Geometry obtained using 6 DOF + APE
- ♦ We use 2016G dataset, looking for μ and Z→ $\mu\mu$ decays
 - → Plus a basic set of requirements on $p_T(\mu)>30$ GeV, χ^2 , num. of hits...
 - \rightarrow One μ is reconstructed as STA, the other as GLB
 - → The mass resolution is shown as a function of Φ/η of the STA muon
- We do not expect physic performance to be different if initial geometry is accurate
 - \rightarrow We want to prove that using 6 DOF (more safe vs initial biases) performance similar
 - \rightarrow If so, moving 6 DOF just make the algorithm more stable and reliable

Physic validation

- M(Z) resolution as a function of Φ/η of the STA muon:
 - → Both 3 and 6 DOF with new alignment give better performance than 2105
 - \rightarrow 3 and 6 DOF give very similar performance

Additional cross-checks

Luca Pernié

Geometry stability over time: DT

- We start from 2016G geometry (latest we provided) with 6 DOF:
 - \rightarrow We run using the same condition on 2016B
 - \rightarrow We compare the final geometry and the initial one

data_DT-1100-111111_SingleMuon_Run2016B_MuAlCalIsolatedMu_272007_275376_8_0_24_Rerecov1_03 - 20166_6DOF

- Everything looks compatible
- X and ΦZ component very similar

Geometry stability over time: CSC

- We start from 2016G CSC geometry (latest we provided):
 - \rightarrow We run using the same condition on 2016B
 - \rightarrow We compare the final geometry and the initial one

data_C3C-1100-110001_SingleMuon_Run2016B_MuAlCalIsolatedMu_272007_275376_8_0_24_Rerecov1_03 = 20166_6DOF

- Everything looks compatible
- X and ΦZ component very similar

- A M
- * If we start from a biased geometry, 3 DOF will lead to a biased geometry

Conclusions

- Alignment with 6 DOF is ready to be used:
 - \rightarrow This is what we propose as new default method for 2017
- Still room for improvements (2017, long term):
 - \rightarrow Few chambers are known for respond with less precision to alignment
 - → Dedicated studies on these chambers could help in improve overall alignment precision
 - → Example: sector 4,10,13,14 station 4 (non pointing)
 - → Example: sector 9,11 station 4 (small size+large scattering)
- We plan to document everything in a Detector Note
 - \rightarrow A also make a paper from it

Backup

Luca Pernié

3 vs 6 degrees of freedom

This plots: difference between ideal geometry and final geometry provided by the algorithm. Ideally should be everything "zero".

3 vs 6 degrees of freedom

This plots: difference between ideal geometry and final geometry provided by the algorithm. Ideally should be everything "zero".

- We want to start from out latest geometry (derived on 2016G data)
 - and see if correctly describe the whole Run2 period
 - \rightarrow We use it to align 2016B dataset
 - \rightarrow We use it to align 2016D dataset

 We expect to find a consistent geometry within the statistic and systematic uncertainties

I RUN	Lumi	
l 2016 B	5.8	
l 2016 C	2.6	
l 2016 D	4.3	
l 2016 E	4.1	
l 2016 F	3.2	
l 2016 G	7.5	

DATASET	from Run	to Run	
Run2016A	271036	271658	
Run2016B	272007	275376	
Run2016C	275657	276283	
Run2016D	276315	276811	
Run2016E	276831	277420	
Run2016F	277772	278808	
Run2016G	278820	280385	
Run2016H	280919	284044	

- We start from 2016G geometry (latest we provided) with 6 DOF:
 - \rightarrow We run using the same condition on 2016D
 - \rightarrow We compare the final geometry and the initial one

data_DT-1100-111111_SingleMuon_Eun2016D_MuAlCalIsolatedMu_276315_276011_0_0_24_Rerecov1_03 - 20160_6D0F

- Everything looks compatible
- X and ΦZ component very similar

- We start from 2016G CSC geometry (latest we provided):
 - \rightarrow We run using the same condition on 2016D
 - \rightarrow We compare the final geometry and the initial one

data_CEC-1100-110001_SinglcMuon_Run2016D_MuAlCalIsolatcdMu_276315_276811_8_0_24_Rerecev1_03 - 2016C_6DOF

- Everything looks compatible
- X and ΦZ component very similar

angles dx/dz and dy/dz are large and unbalanced there

Luca Pernié

Example 2: Aligning a conical geometry

Luca Pernié

Initial Conical geometry

- Physic validation shows similar performance if using 3 or 6 DOF (see later)
- We often compare a geometry obtained with 3 and 6 DOF:
 - \rightarrow Not a fair comparison the original geometry was biased
 - → For example: let's assume initial geometry has a conical bias

Initial Conical geometry

We have an initial geometry that has a conical bias

We align the muon system using 3 DOF method

 \rightarrow we can only compare it with the initial biased geometry in data

Then we align the muon system using 6 DOF method

 \rightarrow we can only compare it with the previous geometry obtained with 3 DOF

Difference between 6 DOF geometry and 3 DOF geometry

 Large difference would indicate the 6 DOF geometry different from 3 DOF geometry

Initial Conical geometry

- When comparing to the IDEAL geometry in fact we see that 6 DOF geometry is simply correcting for the BIAS that in 3 DOF was not corrected
- The spread we saw in last slide is really dependent on the kind specific initial bias we have

