Search for invisible decays of the dark photon at *BABAR*

Alberto Lusiani

Scuola Normale Superiore and INFN, sezione di Pisa

on behalf of the BABAR Collaboration

Light Dark Matter 2017

24-28 May 2017 La Biodola - Isola d'Elba

Motivation

- Hidden/Dark sector New Physics models include particles that
 - can be constituents of Dark Matter in the universe
 - explain some astrophysical anomalies
 - ▶ e.g. excess of positrons from galactic core [Astron.Astrophys. 407 (2003) L55]
 - ▶ explain muon g−2 anomaly
- hidden sector can include "dark photon" A'
 - mass of order GeV
 - coupling (loose) to SM matter via kinetic mixing with photon, $\Delta \mathcal{L} = -\frac{1}{2} \epsilon F^{\mu\nu} F'_{\mu\nu}$
- ► A' may be invisible, decaying into lighter dark-matter particles that escape detection
 - that spoils limits obtained assuming it must decay into ordinary matter particles

$A' \rightarrow \text{invisible in } BABAR$

$$e^{-} \xrightarrow{\alpha' A'} \overbrace{\bar{\chi}}^{\chi} \qquad \begin{cases} \alpha' = \epsilon^{2} \alpha \\ \chi = \text{undetectable DM particle} \end{cases}$$

Existing upper limits on A' mass and coupling

PRL 113, 201801 (2014), former BABAR search e⁺e⁻ → A'γ, A' → e⁺e⁻, μ⁺μ⁻ using 514 fb⁻¹data sample, 90% CL limits on model parameters ε, m_{A'}

BABAR ICHEP 2008 conf. note, arXiv:0808.0017 [hep-ex] Search for Invisible Decays of a Light Scalar in Radiative Transitions $\Upsilon(3S) \rightarrow \gamma A^0$

- BABAR light Higgs search
- based on full $\Upsilon(3S)$ sample, 28 fb⁻¹
- conf. note, never published on journal, but has 101 citations in inspirehep
- re-interpreted as Dark Photon search, for instance in "Dark Sectors and New, Light, Weakly-Coupled Particles", R. Essig *et al.*, arXiv:1311.0029

from R. Essig et al., arXiv:1311.0029

BABAR detector at PEP-II, SLAC National Accelerator Laboratory

BABAR main focus: study of CP violation in B mesons

BABAR: CM energy, collected luminosity

center-of-mass energies

Analysis strategy

search for • $e^-e^+ \rightarrow \gamma A'$, $A' \rightarrow$ invisible (e.g. $\chi \bar{\chi}$) i.e. one single photon and nothing else

$$\sigma \propto \alpha' \alpha = \epsilon^2 \alpha^2$$

• reconstruct
$$A'$$
 mass, $M^2_{A'} = s - 2\sqrt{s}E^*_{\gamma}$

► scan $M_{A'}^2$ distribution, fitting bumps over smooth background, compute significance $[A' \text{ decay width } \Gamma_{A'} \text{ expected } \ll \text{ experimental resolution on } M_{A'}]$

Trigger

BABAR collected \sim 53 fb⁻¹ of data with dedicated single photon triggers during its last year of data taking, mostly collected at the $\Upsilon(3S)$ and $\Upsilon(2S)$ peaks

Hardware trigger

- \geq 1 EMC cluster with E_{LAB} > 800 MeV
- ▶ 52.9 fb⁻¹data sample

Software triggers

- high energy photon trigger line
 - $E_{\gamma}^* > 2 \, \text{GeV}$
 - ▶ no track from interaction region (SVT [+DCH])
 - ▶ active on full 52.9 fb⁻¹data sample
- Iow energy photon trigger line
 - $E_{\gamma}^* > 1 \, \text{GeV}$
 - ▶ no track from interaction region (SVT [+DCH])
 - active on 35.9 fb⁻¹out of the total 52.9 fb⁻¹data sample

Low-mass and high-mass pre-selections

High-mass 24 $< M_{a'}^2 < 69 \,\mathrm{GeV}^2$ Low-mass $-4 < M_{A'}^2 < 36 \,\mathrm{GeV}^2$ • approximately $0 < M_{\Lambda'} < 5.5 \,\text{GeV}$ • approximately $5.5 < M_{\Lambda'} < 8.0 \,\text{GeV}$ background: background: • $e^+e^- \rightarrow e^+e^-\gamma$ with lost $e^+e^-\gamma$ • $e^+e^- \rightarrow \gamma\gamma$ with lost γ • peaking at $M_{A'} = 0$ ▶ tail of $e^+e^- \rightarrow \gamma\gamma$ • low tail away from $M_{A'} = 0$ large but smooth background • $E_{\gamma}^* > 3 \,\text{GeV}$ • $E_{\alpha}^* > 1.5 \, \text{GeV}$ • $|\cos \theta_{\gamma}^*| < 0.6$ against radiative Bhabha • $|\cos \theta_{\gamma}^*| < 0.6$ against radiative Bhabha no track from interaction region no track from interaction region • no DCH-only track with $p^* > 0.1 \,\text{GeV}$ • no DCH-only track with $p^* > 1 \,\text{GeV}$

Boosted Decision Tree (BTD) discriminant

12 input variables

- fired vs. expected EMC crystals
- two transverse moments of EMC shower
- total EMC energy other than most energetic photon
- CM energy and polar angle of 2nd most energetic EMC cluster
- azimuthal angle difference $\Delta \phi_{12}$ between the highest and second-highest energy EMC clusters (the $e^+e^- \rightarrow \gamma\gamma$ events with partial energy deposit in the EMC tend to peak at $\Delta \phi_{12} \sim \pi$)

- distance of missing momentum from EMC crystal edges in θ and ϕ
- angle $\Delta \phi_{NH}$ between the primary photon and the IFR cluster closest to the missing momentum direction $(e^+e^- \rightarrow \gamma\gamma \text{ events peak} \text{ at } \cos \Delta \phi_{NH} \sim -1)$
- variable measuring how close is missing momentum to uninstrumented IFR regions
- ▶ $\cos \theta_{\gamma}^{*}$ (discriminates between signal and background distributions)
- ▶ background sample: $25k (3 \text{ fb}^{-1})$ of $\Upsilon(3S)$ data
- ▶ signal sample: 25k simulated $e^+e^- \rightarrow A'\gamma$, $A' \rightarrow$ invisible, uniform mass distribution
- BDT trained separately in low-mass and high-mass regions

BDT response

High-mass selection

(TMVA = Toolkit for MultiVariate Analysis, http://tmva.sourceforge.net/)

Tight, loose and background selection regions

tight selection region, R_T

• BDT cut,
$$FoM_1 = \frac{\epsilon_S}{\max(N_{BKG}, 2.3)}$$

- maximal suppression of peaking bkg
- appropriate for low-mass A[']
- ► $-0.4 < \cos \theta_{\gamma}^* < 0.6$

 $(e^+e^-
ightarrow \gamma\gamma$ photons in EMC barrel)

loose selection region, R_L

• BDT cut, FoM₂ =
$$\frac{\epsilon_S}{\sqrt{N_{BKG}}}$$

- appropriate for high-mass A'
- smooth background

background selection region, R_B

 select background using BDT output (use to fit background shape on data)

define 9 + 4 non-overlapping data samples

9 low-mass ($0.0 < M_{A'}$	< 5.5 GeV)	samples
-----------------------------	-------------	---------

- $R_{L'} = R_L$, but excluding R_T
- $\{R_{L'}, R_T, R_B\} \times \{2S, 3S, 4S\} = 9$ samples

4 high-mass (5.5 $< M_{a'} < 8.0 \, \text{GeV}$) samples

$$\blacktriangleright \{R_L, R_B\} \times \{2S, 3S\} = 4 \text{ samples}$$

Signal PDF

- Crystal Ball for $e^+e^- \rightarrow A'\gamma$, from simulation (parameters depend on $M_{A'}$)
- ► correct simulated resolution using real data sample $e^+e^- \rightarrow \gamma\gamma$, where one photon converts to e^+e^- in detector material

Background PDF

- low-mass region: second-order polynomial + Crystal Ball for $e^+e^-
 ightarrow \gamma\gamma$
- high-mass region: sum of exponentiated polynomials

Fits and signal yield significance

fit

- simultaneous unbinned extended maximum likelihood fit on all 9+4 samples
- signal normalization fixed to zero on 2 background data samples
- ▶ fit bkg shape on bkg region, float just bkg normalization on tight/loose signal regions
- ▶ scan total of 166 $M_{A'}^2$ values (spaced by about half the resolution)

signal significance

 local significance from likelihood-ratio test

 $\sigma = \sqrt{2\ln(L_{\max}/L_0)}$

- local maximum of 3.1σ at $M_{A'} = 6.21 \,\text{GeV}$
- overall global significance 2.6 σ (estimated look-elsewhere effect with parametrized simulations)
- compute upper limits (both bayesian and frequentist)

Constraints on Dark Photon theory model

- significant improvement over previous searches
- rule out entire region preferred by possible muon (g-2) anomaly
- ▶ search can be re-interpreted to constrain models with invisible narrow resonance

arXiv:1702.03327, submitted to PRL

Bellell sensitivity for Dark Photon to invisible

Chris Hearty estimated the Bellell sensitivity for Dark Photon to invisible at U.S. Cosmic Visions: New Ideas in Dark Matter, March 2017

Summary

- ► BABAR searched for Dark Photon decaying to an invisible final state
- no evidence for signal, upper limits on theory model computed
 - results exclude Dark Photon as origin of muon g-2 anomaly
 - can be re-interpreted for models with narrow invisible resonance from e^+e^- collisions
- large improvement over previous measurements
- Bellell can significantly improve the search range
- paper submitted to PRL

Backup Slides

References

- Early SPI/INTEGRAL measurements of galactic 511 keV line emission from positron annihilation, P.Jean et al., Astron.Astrophys. 407 (2003) L55
- ► Dark Sectors and New, Light, Weakly-Coupled Particles, R. Essig *et al.*, arXiv:1311.0029 [hep-ph]
- Dark Photon references,

P. Fayet, Phys. Lett. B 95 285 (1980), Nucl. Phys. B 187, 184 (1981); B. Holdom, Phys. Lett. B 166, 196 (1986); N. Borodatchenkova, D. Choudhury and M. Drees, Phys. Rev. Lett. 96, 141802 (2006); D. P. Finkbeiner and N. Weiner, Phys. Rev. D 76, 083519 (2007); M. Pospelov, A. Ritz, and M. B. Voloshin, Phys. Lett. B 662, 53 (2008); N. Arkani-Hamed et al., Phys. Rev. D 79, 015014 (2009)

- ► Search for Invisible Decays of a Light Scalar in Radiative Transitions $\Upsilon(3S) \rightarrow \gamma A^{0}$, BABAR, arXiv:0808.0017 [hep-ex]
- ► Search for a dark photon in e^+e^- collisions at BABAR $(A' \rightarrow e^+e^-, \mu^+\mu^-)$ BABAR, PRL 113, 201801 (2014)
- ► Search for invisible decays of a dark photon produced in e⁺e⁻ collisions at BABAR, BABAR, arXiv:1702.03327 [hep-ex]