

Light Dark Matter 2017

24-28 May 2017

La Biodola - Isola d'Elba

SEARCHES FOR DARK MATTER AT ATLAS AND CMS

Rocío Vilar (for Atlas and CMS collaboration) Instituto de Física de Cantabria (IFCA)

OUTLINE

- Introduction
- Experimental apparatus
- Mono-X
 - X=jets, W/Z, γ, Higgs, Top
- Conclusions and Outlook

INTRODUCTION

- There are plenty of motives to search for new physics at LHC
 - gauge hierarchy problems, baryon asymmetry, flavour problems, neutrino masses and mixing..etc
 - Dark Energy
 - Dark Matter. Evidence that exists So let's look for it from all perspectives, including LHC, we expect new particles and forces.
 Also cosmology points out to weak scale, LHC is suited for search this scale

INT.:MODELS AT LHC

- EFT theories: Heavy mediators integrated out
 - model independent
 - Validity issues at LHC energies
- Simplified Models: Explicit nature of the Mediator
 - at least 4 parameter:
 - M_{med}, M_x, g_{SM}, g_{DM}
 - valid at all energies

X

LHC DM Forum: <u>arxiv:1507.00966</u>

q

INTRODUCTION

- Look everywhere, wide range and generic signatures
 - Dark Sector: dijets, dileptons, displaced, portals, etc (see <u>M. Vertucci´s talk</u>)
 - Dark Matter candidates: pp-> Met + X (mono-X search)

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

SEARCHES AT LHC

		<u>ATLAS</u>		<u>CMS</u>			
		ref.	data	L(fb ⁻¹)	ref	data	L(fb ⁻¹)
Mono-γ		<u>arxiv</u> new 1704.03848	2015+2016	36.1	<u>CMS-PAS-</u> EXO-16-039	2016	12.9
Mono-V		<u>Phys. Lett. B</u> 763 (2016) 251	2015	3.2	CMS-PA,	2015+2016	25.0
Mono-jet		PRD 94 (2016) 032005	2015	3.2	EXO-16-048	201572010	35.9
	bb	ATLAS new CONF-2017-028	2015+2016	36.1	arXiv 1703.0	2015	2.3
mono- Hiσσs	γγ	ATLAS new CONF-2017-024	2015+2016	36.1	<u>CMS-PAS-</u> <u>EXO-17-054</u>	2015+2016	35.9
1165	ZZ	ATLAS- CONF-2015-059	2015	3.2			
mono-Z		ATLAS- CONF-2016-056	2015+2016	13.3	CMS-PAS EXO-16-052	2016	35.9
mono-top					<u>CMS-PAS-</u> EXO-16-040	2015+2016	12.9
	had	ATLAS- CONF-2016-077	2015+2016	13.3	<u>CMS-PAS-</u>	2015	2.2
mono- tt	semi-l	ATLAS- CONF-2016-050	2015+2016	13.2	EXO-16-005	2015	Z.Z
	lep	ATLAS- CONF-2016-076	2015+2016	13.3	CMS-PAS- EXO-16-028	2015	2.2
mono-bb		ATLAS- CONF-2016-086	2015+2016	13.3	CMS-PAS- B2G-15-007	2015	2.17

• SELECTION

- Well identified High P_T isolated γ + High missing $E_T(\mathbb{E}_T)$
- Additional azimuthal requirements between \mathbb{E}_T and jets or leptons
- lepton veto

BACKGROUNDS

- Main: true photon with EWK productions (~80%): $Z (->vv) + \gamma, W(|v) + \gamma$
 - also Z (->II)+ γ , tt γ , VV γ ,W(Iv)
- Others are
 - electron fakes and jet fakes,
 - detector backgrounds,
 - γ+jets,

• SELECTION

- Well identified High P_{T} isolated γ + High missing $E_{T}(\mathbb{E}_{T})$
- Additional azimuthal requirements between \mathbb{E}_T and jets or leptons
- lepton veto

BACKGROUNDS

Main: true photon with EWK productions (~80%): $Z(->vv) + \gamma, W(|v) + \gamma$ Calculated with MC and

 $(10) + \gamma$ Calculated with MC and normalised in CRs: $II + \gamma$, $\mu + \gamma$

- also Z (->II)+ γ , tt γ , VV γ ,W(Iv)
- Others are
 - electron fakes and jet fakes,
 - detector backgrounds,
 γ+jets,

From data fake ratio for electron, side bands for hadrons

MONO- γ : RESULTS

- No excess is found, limits based on the the models proposed by the CMS-ATLAS forum:
 - Limits for vector/axial mediator of 1200 (750) GeV
 - EFT Dim-7 EFT scale up to 620 GeV
- With the Run II data the limits are still dominated by statistics:
 - Main Systematics coming from PDFs, energy scales and resolutions (*E_T*), backgrounds normalisation. The total background uncertainties could vary up 6-14%.

MONO Z(->LL)

• Selection

- two well defined high Pt isolated leptons with same flavour
- m_{II} within the Z mass window
- large \mathbb{E}_T and requirements of balance ratio, $|E_T P_T^{''}|/P_T^{''}|$
- $P_{T}(II)$ great that 60 GeV and $\Delta R(II)$
- ≤1 jet and b-jet veto and extra lepton veto
- azimuthal angles requirements between leptons and jet and \mathbb{E}_T

Backgrounds

- ZZ, WZ (85%)
 - Calculated with MC and normalised in CRs: 3leptons and 4 leptons
- WW, top (tt,tW), DY, VVV
 - combination of datadriven, CR and MC
- W+jet, ZH, H,

MONO Z(->LL)

- No excess is found, limits are set
 - Simplified Models of DM (vector/axial, scalar/pseudoscalar)
 - vector/axial: M______>680 GeV and M____ up to 240 (150) GeV
 - Invisible Higgs, ADD
- Systematic Uncertainties
 - Theoretical uncertainties are missing higher order corrections, PDFs (5% in signal), plus EWK corrections for the backgrounds (14%)
 - Experimental uncertainties includes luminosity, leptons related, energy scales, resolutions and modelling (jet and \underline{E}_T) (around 3%)

SELECTION

- >1 High P_{T} Jet, separate from the \mathbb{E}_{T}
- large \mathbb{E}_T
- No leptons
- CMS includes mono-V
 - large R jet (0.8) with very high P
 - very high \mathbb{E}_T
 - V-tagging w/N-subjettines variables
 - m_{ii} requirement

MONO-JET/V

- No excess found, limits on both spin 1 and 0 mediators
- Main Systematic uncertainties:
 - Background theoretical uncertainties: Normalisation and factorisations scales, PS-ME matching, W/Z +jets modelling

Experimental uncertainties:
lepton ID, \mathbb{E}_T

CMS (35.9 fb ⁻	^l) mono Jet/V		m _{med} [Ge ^v	
Pseudo(Scalar)	Mmed < 400(100) GeV M _{DM} <175(35) GeV ATLAS (3.		fb ^{-l}) mono Jet	
Vector/Axial	<i>Mmed</i> < 1.8 TeV М _{DM<} 750(550) GeV	ADD LED	MD< 6.58 TeV at n MD< 4.31 TeV at n	
H(Inv)BR	< 0.53(0.4)	Axial -vector	l TeV	

MONO-JET/V

- No excess found, limits on both spin 1 and 0 mediators
- Main Systematic uncertainties:
 - Background theoretical uncertainties: Normalisation and factorisations scales, PS-ME matching, W/Z +jets modelling
 - Experimental uncertainties: lepton ID, \mathbb{E}_{T}

- ISR suppressed by the small mass couplings to quarks
 - preferentially emitted as part of the effective vertex itself.
 - positive mono-Higgs signal would probe directly the structure of the effective DM-SM coupling
- Signal involved Higgs in the BSM models responsible for producing DM
 - Signatures are Higgs signal (ZZ, $\gamma\gamma$, bb,etc) plus large \mathbb{E}_{T}

Hig

• H (bb)

• Selection

- b-jets, lepton veto and m consistent with H_{mass} and large E_T
- azimuthal angle requirements between \mathbb{E}_{T} and jets, and \mathbb{E}_{T} and P_{T}^{miss}
- **Resolved**: two b-jets, large P_T^H , separation between Higgs and \mathbb{E}_T , energetic activity coming from jets in the Higgs
- Boosted: large R-jet consistent with H , veto τ leptons within large jet, and additional b-jets and small hadron activity outside the large jet
- Background
 - Z+bb(30/60%) ,W+jets(10/25%) and tt(15/50%) depending on SR
 - Constrain from control regions (1 μ or 2 l)
 - others: VV, VH, tW or multijets are from MC predictions.
- Systematics uncertainties coming mainly from background modelling and b-tagging. Stats dominates the measurements

- Η (γγ)
 - Selection
 - two high Pt γ s, m $_{\gamma\gamma}$ >95 GeV, P $_{T}^{\gamma}$ /m $_{\gamma\gamma}$ >1/3. If photons are two close, no iso requirements $_{\gamma\gamma}$ miss
 - large P_{T} and P_{T} and less than 3 high P_{T} jets
 - azimuthal angle requirements between 2 photons and $P_{T}^{miss,}$ and an energetic jet and $P_{T}^{miss,}$
 - Background
 - resonant: SM H(H and VH) to photons;
 - estimated from MC
 - non resonant QCD, EWK.
 - Background estimated from data driven fitting the data
 - Systematics coming mainly from theory in the Higgs background and experimental uncertainties in the $P_{T}^{miss, '}$ thought the systematics accounts less than

1%. Dominated by the stats

• H (bb)

• Selection

- b-jets, lepton veto and m consistent with H_{mass} and large E_T
- azimuthal angle requirements between \mathbb{E}_T and jets, and \mathbb{E}_T and P_T^{miss}
- **Resolved**: two b-jets, large P^H, separation

• Η (γγ)

• Selection

- two high Pt γ s, m_{$\gamma\gamma$} >95 GeV, P_T /m_{$\gamma\gamma$} >1/3. If photons are two close, no iso requirements $\gamma\gamma$ miss
- large P_{T} and P_{T} and less than 3 high P_{T} jets
- azimuthal angle requirements between 2

Η (γγ)

-054 35.9 (13 TeV)

2×10³ M_{7'} (GeV)

35.9 (13 TeV)

M_z (GeV)

- Signature: •
 - tt + E_{τ} in hadronic, semileptonic and K. Hahn - Dark Matter at CMS -Aspen 2017 Background: top (top 03/21/17

كووووووو

00000000

vith N-

top

Vriday, March 24, 17

- jets and b-tag requirements, kinematical ulletand topological cuts
- fat-jets for boosted regions. •
- DM+top (mono-top) •
 - Signature:

•	fully had	dronic to	on decay in b	000
Variable	DM_low	DM_high		
Number of (jets, <i>b</i> -tags)	(≥ 4, ≥ 1)	(≥ 4, ≥ 1)		acti
$Jet p_{\rm T} > [GeV]$	(60 60 40 25)	(50 50 50 25)		acu
E ^{miss} _T [GeV]	> 300	> 330		
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 9.5		vith
m _T [GeV]	> 120	> 220		
am_{T2} [GeV]	> 140	> 170		i toi
$\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i))(i \in \{1-4\})$	> 1.4	> 0.8		
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, \ell)$	> 0.8	_		b-ie

onstraint in CR in simultaneous fit

DM+TOP

- No Excess, set limits on scalar-pseudoscalar mediators
 - tt+DM
 - semileptonic channel ATLAS sees a local excess of 3.3 σ in one the SR regions no seen any where else
 - t+DM
 - $M_{med} < 2.7 \text{ TeV for } M_{\chi} = 100 \text{GeV}$, for a non resonant model with FNCN $M_{med} < 1.5 \text{ TeV for } M_{\chi} = 10 \text{GeV}$
- Main systematics includes Theoretical uncertainties in background modelling (renormalization and factorizations, HF, EWK corrections) and Experimental (b-tagging, toptagging, objects ID), luminosity.

SUMMARY OF DM +X SEARCH

95% CL exclusion region in the mediator- DM mass plane for different MET+X searches for spin-1/0 mediators with couplings

$$g_q = 0.25, g_l = 0, g_{DM} = 1$$
 or $g_q = 0.1, g_l = 0.1, g_{DM} = 0.1$

The mono-jet has better sensitivity with full 2016+2015 lumi. Recast of MET+X analysis to set DM-nucleon limits:

- SD the strongest
- SI the strongest below 5.5 GeV
- this is only valid for the coupling and models chosen

CMS-LHCP-2017

CONCLUSIONS

- Searches at different MET +X final states have been presented
- No excess has been observed yet -> 95% C.L upper limits were set in several Simplified Models using Run II data:
 - limits at low mass spin 0 mediators
 - multi-TeV mass spin 1 mediators
- Searches at Dark Matter at LHC are **complementary** to other searches
 - **Re-interpretation** in terms of **DM-nucleon** cross sections

CONCLUSIONS

- Searches at different MET +X final states have been presented
- No excess has been observed yet -> 95% C.L upper limits were set in several Simplified Models using Run II data:
 - limits at low mass spin 0 mediators
 - multi-TeV mass spin 1 mediators
- Searches at Dark Matter at LHC are **complementary** to other searches
 - Re-interpretation in terms of DM-nucleon cross sections

NEW SEARCHES ARE IN PREPARATION SO STAY TUNE!!! (WE'LL KEEP LOOKING)

CONCLUSIONS

- Searches at different MET +X final states have been presented
- No excess has been observed yet -> 95% C.L upper limits were set in several Simplified Models using Run II data:
 - limits at low mass spin 0 mediators
 - multi-TeV mass spin 1 mediators
- Searches at Dark Matter at LHC are **complementary** to other searches
 - Re-interpretation in terms of DM-nucleon cross sections

NEW SEARCHES ARE IN PREPARATION SO STAY TUNE!!! (WE'LL KEEP LOOKING)

THANKS!!!

• ¿ANY QUESTIONS?

BACK-UP SLIDES(stolen from others)

Benchmark Models

In Run II the ATLAS and CMS experiments moved away from the use of EFT inspired models with questionable validity at high-Q²

A set of well-defined simplified diagrams with heavy mediators is now considered motivated by a number of different considerations (DM Forum: arXiv:1507.00966)

- Simple extensions of SM symmetries
- Minimal Flavor Violation
- Assuming Yukawa couplings → favor 3rd generation
- Some models inspired by satellite "hints"

Simplified models for early Run-2 searches

Motivation and goal of Dark Matter Forum effort:

- Define a basis of simplified models with distinct kinematic distributions
- Aid design of generic LHC Run-2 searches
- Grounding assumptions:
- Dirac DM

- Mediator has minimal decay width
- A new massive particle mediates the DM-SM interaction
- Minimal Flavor Violation
 DM particles are pair-produced
- ...but not necessarily gauge invariance

Dirac WIMP mediators: s- and t-channel exchange vector/axial-vector/scalar/pseudo-scalar (MFV) MET+heavy flavour, W, Z, and Higgs

Horizon 2020

European Union funding

for Research & Innovation

	ATLAS	CMS			
Magnetic field	2 T solenoid + toroid: 0.5 T (barrel), 1 T (endcap)	4 T solenoid + return yoke			
Tracker	Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$	Silicon pixels and strips (full silicon tracker) $\sigma/p_T \approx 1.5 \cdot 10^{-4} p_T + 0.005$			
EM calorimeter	Liquid argon + Pb absorbers $\sigma/E \approx 10\%/\sqrt{E} + 0.007$	PbWO ₄ crystals $\sigma/E \approx 3\%/\sqrt{E} + 0.003$			
Hadronic calorimeter	Fe + scintillator / Cu+LAr (10λ) σ/E ≈ 50%/√E + 0.03 GeV	Brass + scintillator (7 λ + catcher) $\sigma/E \approx 100\%/\sqrt{E} + 0.05 \text{ GeV}$			
Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)	σ/p _T ≈ 1% @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)			
Trigger	L1 + HLT (L2+EF)	L1 + HLT (L2 + L3)			

The ATLAS Experiment

ATLAS is a multipurpose experiment designed to achieve the highest possible flexibility in different sectors of the high energy physics

CMS in 2016

- New Capabilities
 - Forward Proton tagging
 - CMS Totem Precision Proton Spectrometer CT-PPS
 - Tags forward protons to identify double diffractive scattering and Central Exclusive Production of high mass states
 - New Level 1 Muon trigger
 - New Level 1 Calorimeter trigger
 - Endcap Muon Detectors had been upgraded in 2013/14
- Cryogenic System (a.k.a. COLD BOX) for CMS solenoid performed superbly
 - Repair/refurbishment plan succeeded to avoid problems encountered in 2015
- Big challenge to deal with even higher pileup than Run 1

LHC performance in 2016

- Excellent performance of LHC in 2016:
 - Record instantaneous luminosity for p-p interactions 1.4x10³⁴ cm⁻² s⁻¹
 - Record delivered luminosity in one year ~ 40 fb⁻¹
 - Excellent p-Pb run:
 - p-Pb Data taken at 5 and 8 TeV
 - Data taken with Pb beams circulating clockwise and anticlockwise

Many thanks from ATLAS to the LHC team

LHCP 2017- L. Pontecorvo

Event Selection and Background

Events are primarily selected with MET cuts on exponentially dumping MET spectra. Major remaining background are events with Z(vv) or W(lv) with lost lepton.

	Mono-γ	<mark>Mono-Ζ(</mark> ee,μμ)	Mono-V(had)		
ATLAS CMS	MET > 150 GeV MET > 170 GeV	MET > 90 GeV MET > 100 GeV	MET > 250 GeV MET > 250 GeV		
Major background:					
	Ζ(νν)γ 55 %	$ZZ(\nu\nu)+WZ(\nu\nu)$	Z(vv)+jets 55 %		
	W(Iν)γ 15 %	75 %	W(Iv)+jets 30 %		
	(Percentages are very approximate and rounded to numbers nearest to those in 5 % step. More details in the following.)				

□ Look for large MET, atleast one high p_T jet and veto leptons, photons, b-jets
 □ mono-jet:
 ☑ MET>250 GeV,
 ☑ p_T^{leading}(ak4 jet) > 100 GeV
 □ mono-V:

⊠MET>250 GeV,

 $\mathbf{v}_{T}^{\text{leading}}(ak8 \text{ jet}) > 250 \text{ GeV}$

 \square mass: [m_W-15, m_Z+15],

 \blacksquare Nsubjettiness (τ_2/τ_1) < 0.6

Need precise estimation of dominant backgrounds

```
☑ Z(vv)+Jets (60%)) and W+Jets (30%)
```

☑ Five control region in data

- $Z(\mu\mu)$ +Jets, Z(ee)+Jets, γ +Jets to estimate Z
- $W(\mu\nu)$ +Jets, $W(e\nu)$ +Jets to estimate W

```
Estimate background and
extract signal strength by
performing a simultaneous fit
of all mono-jet and mono-V
control and signal regions.
```

• Extrapolating from control region to signal region by means of precise theoretical prediction.

Analysis strategy in CMS

- Transfer factor to translate recoil (in CR) to missing E_T (in SR)
- Global likelihood fit simultaneously to SR+5CR regions in all E_T^{miss} bins

$$\begin{split} \mathcal{L}_{k}(\mu^{Z(v\bar{v})},\mu,\theta) &= \prod_{i} \operatorname{Poisson} \left(d_{i}^{\gamma} | B_{i}^{\gamma}(\theta) + \frac{\mu_{i}^{Z(v\bar{v})}}{R_{i}^{\gamma}(\theta)} \right) & \gamma + \operatorname{jets} \operatorname{CR} \\ & \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu\mu} | B_{i}^{\mu\mu}(\theta) + \frac{\mu_{i}^{Z(v\bar{v})}}{R_{i}^{\mu\mu}(\theta)} \right) \\ & \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{ee} | B_{i}^{ee}(\theta) + \frac{\mu_{i}^{Z(v\bar{v})}}{R_{i}^{ee}(\theta)} \right) \\ & \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu} | B_{i}^{\mu}(\theta) + \frac{f_{i}(\theta)\mu_{i}^{Z(v\bar{v})}}{R_{i}^{\mu}(\theta)} \right) \\ & \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{e} | B_{i}^{ee}(\theta) + \frac{f_{i}(\theta)\mu_{i}^{Z(v\bar{v})}}{R_{i}^{e}(\theta)} \right) \\ & \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{e} | B_{i}^{e}(\theta) + (1 + f_{i}(\theta))\mu_{i}^{Z(v\bar{v})} + \mu S_{i}(\theta) \right) \\ & \times \prod_{i} \operatorname{Poisson} \left(d_{i} | B_{i}(\theta) + (1 + f_{i}(\theta))\mu_{i}^{Z(v\bar{v})} + \mu S_{i}(\theta) \right) \\ & \mu_{i}^{W \to iv} \to f_{i}(\theta) \cdot \mu_{i}^{Z \to vv} \\ \end{split}$$

constraints from transfer factors, only one free parameter to fit

CMS Experiment at LHC, CERN Data recorded: Mon Jun 13 17:44:28 2016 CEST Run/Event: 274999 / 1837785290 Lumi section: 1029

$E_T^{miss} = 1.05 \text{ TeV}$

Mono-H(bb) background normalizations

	CMS (resolved)	CMS (boosted)	ATLAS
Z+jets	Mass s	Mass shape fit and 2I CR	
W+jets	1I+0j CR	1I CR	1mu CR
Тор	1I+1j CR		

Recast (M_{MED}, M_X) to nucleon-DM xsec (arXiv:1603.04156</sub>)

$$\sigma_{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4}\,, \label{eq:sigma_sigma}$$

$$f(g_q) = 3g_q \,,$$

$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \,\,\mathrm{cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \,\,\mathrm{TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\,\mathrm{GeV}}\right)^2$$

$$f(g_q) = 1.16 \cdot 10^{-3} g_q \,,$$

and therefore the size of a typical cross section is

$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-43} \ {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{1}\right)^2 \left(\frac{125 \,{\rm GeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,{\rm GeV}}\right)^2$$

Vector

Scalar

Recast (M_{MED}, M_X) to nucleon-DM xsec (arXiv:1603.04156</sub>)

$$\sigma_{\rm SD} = \frac{3f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4} \,. \qquad f^{p,n}(g_q) = \Delta_u^{(p,n)} g_u + \Delta_d^{(p,n)} g_d + \Delta_s^{(p,n)} g_s$$

Under the assumption that the coupling g_q is equal for all quarks, one finds

$$f(g_q) = 0.32g_q \,,$$

and thus

$$\sigma^{\rm SD} \simeq 2.4 \times 10^{-42} \ {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \ {\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ {\rm GeV}}\right)^2$$