Light Dark Matter 2017

Searching for
Axion-like particles
with heavy-ions

Hou Keong (Tim) Lou,

Simon Knapen, Tongyan Lin and Tom Melia

PhysRevLett.118.171801

*Disclaimer: Not Dark Matter! Sorry!

*Disclaimer: Not Dark Matter! Sorry!

Searching for
Axion-like particles
with heavy-ions

Hou Keong (Tim) Lou,

Simon Knapen, Tongyan Lin and Tom Melia

PhysRevLett.118.171801

New Physics @LHC

- Must leave no stone unturned!
- ♦ There may be many surprises!
 - ♦ 750 GeV (false alarm)
- Can we be missing cousins of 750 GeV?
- Possibly: What if resonance is lighter?

New Physics @LHC

- ♦ Must leave no stone unturned!
- ♦ There may be many surprises!
 - ♦ 750 GeV (false alarm)
- Can we be missing cousins of 750 GeV?
- Possibly: What if resonance is lighter?

Axion-like Particle

♦ Only couple to EM

$$\mathcal{L}_a = \frac{1}{2}(\partial a)^2 - \frac{1}{2}m_a^2a^2 - \frac{a}{4\Lambda}F\widetilde{F}$$

Decay rate

$$\Gamma_{a \to \gamma\gamma} = \frac{1}{64\pi} \frac{m_a^3}{\Lambda^2}$$

♦ Can we improve limits ~ GeV range? (Not DM! sorry!)

Existing Constraints

J. Jaeckel et.al. 1509.00476

Axion-like Particle

♦ Only couple to EM

$$\mathcal{L}_a = \frac{1}{2}(\partial a)^2 - \frac{1}{2}m_a^2a^2 - \frac{a}{4\Lambda}F\widetilde{F}$$

Decay rate

$$\Gamma_{a \to \gamma\gamma} = \frac{1}{64\pi} \frac{m_a^3}{\Lambda^2}$$

♦ Can we improve limits ~ GeV range? (Not DM! sorry!)

Existing Constraints

J. Jaeckel et.al. 1509.00476

How to look for ALPs

Light ALPs

- Beam dumps/fixed targets
- Decays of mesons
- Astrophysics
- Cosmology

Heavy ALPs

- Main limits from colliders
- \diamond Production rates limited by \sqrt{s}
- ♦ LHCb, CMS, ATLAS, ALICE
- ♦ p-p, Pb-p, Pb-Pb

Heavy-ion as a γ source

- ♦ Old idea A. Balantekin et.al. 1985, M. Greiner et.al. 1993...
- ♦ Enhanced production at Heavy-ion collisions (~GeV)
- ♦ QED is strongly coupled!
- $\Rightarrow Z^4 \sim 50 \times 10^6$ enhancement

Can observe LBL scattering!

Heavy-ion as a γ source

- ♦ Old idea A. Balantekin et.al. 1985, M. Greiner et.al. 1993...
- ♦ Enhanced production at Heavy-ion collisions (~GeV)
- ♦ QED is strongly coupled!
- $\Rightarrow Z^4 \sim 50 \times 10^6$ enhancement

Can observe LBL scattering!

Ultra-Peripheral Collisions

- Grazing collision, ions do NOT breakup
- ALPs are created in the strong EM field of the ions (photons almost on-shell)
- ♦ Luminosity ~ classical formula (lead flashlight!)
- ♦ Coherence requires photon wavelength ≥Pb radius / boost

$$\Rightarrow 2E_{\gamma} < 170 \text{ GeV}\left(\frac{7 \text{ fm}}{R}\right) \left(\frac{\sqrt{s_{NN}}}{5.5 \text{ TeV}}\right)$$

Photon Luminosity

Photon-photon luminosity:

$$\mathcal{L}_{\gamma\gamma} = \frac{1}{\hat{s}} \int db_{1,2} dE_{1,2} N_1 N_2$$
$$\times \delta(\hat{s} - 4E_1 E_2) P$$

- $\diamond N_{1,2} = \text{flux from Pb}$
- \Leftrightarrow *P* = probability that no breakup occurs
- ♦ $N_{1,2}$ ~ charge form factor

$$\Leftrightarrow$$
 Low energy $\sim \frac{2\alpha Z^2}{\pi} \log \frac{E_{\text{max}}}{E_{\gamma}}$

- $\Rightarrow P \sim \theta(b_2 2R)$
- Requires nuclear physics to get all factors correct

Proton vs Pb

	p-p Collisions	Pb-Pb Collisions
Luminosity	~ 1000 fb ⁻¹	~ 10 ⁻⁶ fb ⁻¹ (1 nb ⁻¹)
Z ⁴ Enhancement	None	$\sim 5 \times 10^7$
Max γ Energy	~ 1 TeV (elastic)	~ 170 GeV
Background	Large pile-up background	Clean exclusive events
Regions of sensitivity	<i>m</i> _a ∼100 GeV	m _a ∼10 GeV

when p and Pb collide...

Main Background

Light by Light scattering

Fake photons / electron brem.

Central Exclusive Production

Signal & Background

Signal

- Intact Pb-Pb ions, no tracks, very little calorimeter activity
- Veto on tracks
- * Two ~GeV back to back photons (cut on $\Delta \phi_{\gamma\gamma}$)
 - Otherwise ions will likely breakup
- Intact ions may be tagged
- Prominent mass peak!

Background

- ♦ LBL scattering
 - ♦ Irreducible
 - Has been measured! Can be calculated reliably
- Electrons fakes/brem or CEP (photons from QCD)
 - ♦ Photons not back to back
- \Leftrightarrow All background smoothly falling in $m_{\gamma\gamma}!$

Search Strategy

Signal Selection

- \diamond Veto tracks with $(p_T > 1 \text{ GeV}, |\eta| < 2.5)$
- \diamond Two photons ($p_T > 2$ GeV, $|\eta| < 2.5$)
- $| \Delta \phi_{\gamma \gamma} \pi | < 0.04$
- ♦ Efficiency ~70% low mass to ~90% at high mass
- Signal MC implemented in Starlight
- ♦ Background:
 - Analytic approx. for γγ-lumi
 - ♦ ME done analytically / Madgaph5

Integrated lumi. ~ nb

Results

Standard ALP coupling

- p-p collider searches dominatedby associated production
 - ♦ Photon fusion sub-dominant
 - $\Leftrightarrow p + p \to \gamma^* \to a + \gamma$
 - ♦ LEP/CMS/ATLAS comparable
- ♦ 8 TeV re-cast
 - high lumi results will be stronger

Results

- \Leftrightarrow Introduces $aZ\gamma$ coupling
 - $\Leftrightarrow p + p \to \gamma/Z^* \to a + \gamma/Z$
 - \diamond On-shell $Z \rightarrow a + \gamma$
- Heavy-ion limits comparable to8 TeV results
- High-Luminosity LHC will likely yield stronger limits

Hypercharge coupling

ATLAS recast

- $\diamond \sqrt{s_{NN}} = 5.02 \text{ TeV}$
- \Leftrightarrow $\int Ldt = 480 \,\mu b^{-1}$
- Current best limit on ALPs with EM coupling!
- First time heavy-ion yields best limit on BSM physics

Future Directions?

New decay channel?

- * $b\bar{b}/\tau\tau$ decay for light scalar mixing with higgs?
- Invisible decay? Can we measure the outgoing beam?
- Exotic decay into hidden sector?e.g. long-lived particles?

New production?

- New kinds of coherent enhancement (baryon number)?
- Lighter ALPs? (pair production and off-shell rates are too small)
- Changes in inclusive elastic cross-sections?

Conclusion

- Heavy-ion collisions open a new window into ~ GeV ALPs/Hidden sector
- ♦ ATLAS Heavy-ion search places the
 best constraint for ~ GeV ALPs
 - ♦ CMS results forthcoming
- Hidden sector may show up in unexpected places!

KEEP
SEARCHING
AND
CARRY
ON

Where are the ALPs?

I think I've found it with my lead-flashlight!

Thank You!

p_T recoil distribution

- ♦ p_T ~ virtuality of the photon
- Correction beyond equivalent photon approximation
- \Leftrightarrow ALPs: $p_T \sim 1/R \sim 60 \text{ MeV}$
- ♦ CEP: $p_T \sim \Lambda \sim \text{GeV}$
 - ⋄ p-p collisions shown
 - Pb-Pb requires convolution with breakup factor

Form Factors Effects

M. Klusek-Gawenda et.al. 1601.07001