

Search for dark sectors in missing energy events

NA64 at Cern

Michael Hösgen on behalf of the NA64 collaboration,

Helmholtz-Institut für Strahlen und Kernphysik, University Bonn

The NA64 Collaboration

D. Banerjee,¹¹ V. Burtsev,⁹ D. Cooke,¹¹ P. Crivelli,¹¹ E. Depero,¹¹ A. V. Dermenev,⁴ S. V. Donskov,⁸ F. Dubinin,⁵ R. R. Dusaev,⁹ S. Emmenegger,¹¹ A. Fabich,³ V. N. Frolov,² A. Gardikiotis,⁷ S. N. Gninenko^{*},⁴ M. Hösgen,¹ V. A. Kachanov,⁸ A. E. Karneyeu,⁴ B. Ketzer,¹ D. V. Kirpichnikov,⁴ M. M. Kirsanov,⁴ I. V. Konorov,⁵ S. G. Kovalenko,¹⁰ V. A. Kramarenko,⁶ L. V. Kravchuk,⁴ N. V. Krasnikov,⁴ S. V. Kuleshov,¹⁰ V. E. Lyubovitskij,⁹ V. Lysan,² V. A. Matveev,² Yu. V. Mikhailov,⁸ V. V. Myalkovskiy,² V. D. Peshekhonov,² D. V. Peshekhonov,² O. Petuhov,⁴ V. A. Polyakov,⁸ B. Radics,¹¹ A. Rubbia,¹¹ V. D. Samoylenko,⁸ V. O. Tikhomirov,⁵ D. A. Tlisov,⁴ A. N. Toropin,⁴ A. Yu. Trifonov,⁹ B. Vasilishin,⁹ G. Vasquez Arenas,¹⁰ P. Ulloa,¹⁰ K. Zhukov,⁵ and K. Zioutas⁷ (The NA64 Collaboration[‡]) ¹Universität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany ²Joint Institute for Nuclear Research, 141980 Dubna, Russia ³CERN. European Organization for Nuclear Research, CH-1211 Geneva, Switzerland ⁴Institute for Nuclear Research. 117312 Moscow. Russia ⁵P.N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia ⁶Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ⁷Physics Department, University of Patras, Patras, Greece ⁸State Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia ⁹Tomsk Polytechnic University, 634050 Tomsk, Russia ¹⁰Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile ¹¹ETH Zürich. Institute for Particle Physics. CH-8093 Zürich. Switzerland

47 researchers from 12 institutes

Hidden/Dark sectors

$$\Delta \mathcal{L} = \frac{\epsilon}{2} \, F^{Y,\mu\nu} F'_{\mu\nu}$$

"Kinetic Mixing"

Galison, Manohar

- Extra (broken) U(1)' symmetry \rightarrow new massive boson A' $10^{-6} \le \epsilon \le 10^{-3}$ $M_{A'} \le 1 \,\text{GeV}$
- Explanation for muon g-2 anomaly?
- A' decay modes:
 - Visible: A' \rightarrow e⁺e⁻, $\mu^+\mu^-$
 - Invisible: $A' \to \chi \overline{\chi}$, current focus of NA64

Active target beam dump concept

- Dark photon production by kinetic mixing in the ECAL
 - 4 + 36 radiation length shashlik Pb + Sc with fibre read-out
- Hermetic HCAL with ~ 30 nuclear interaction length (FeSc Sandwich)
- Veto counter for charged hadron events (Scintillator ~40 mm)

Active target beam dump concept

Dark Photon Signature for 100 GeV electron beam:

- Missing energy in ECAL (ECAL threshold < 50 GeV)
- No activity in Veto and HCAL

Requirements to the beam:

- Highest possible intensity (\sim 5×10⁶ e/spill of \sim 4.8 s)
- Lowest possible hadron/muon contamination
- Smallest possible low energy tails

Requirements to the beam:

- Highest possible intensity (~5×10⁶ e/spill of ~4.8 s)
- Lowest possible hadron/muon contamination
- Smallest possible low energy tails

C 4 T

Background suppression

Requirements to the beam:

- Highest possible intensity (~5×10⁶ e/spill of ~4.8 s)
- Lowest possible hadron/muon contamination
- Smallest possible low energy tails

Background suppression

Requirements to the beam:

- Highest possible intensity (\sim 5×10⁶ e/spill of \sim 4.8 s)
- Lowest possible hadron/muon contamination
- Smallest possible low energy tails

in the second se

Background suppression

Requirements to the beam:

- Highest possible intensity (~5×10⁶ e/spill of ~4.8 s)
- Lowest possible hadron/muon contamination
- Smallest possible low energy tails

Summer 2016, 2×10⁹ eot.

Sector I : $eZ \rightarrow eZ\gamma$; $\gamma \rightarrow \mu\mu$ (benchmark channel for background/MC) Sector II : ECAL + HCAL = 100 GeV Sector III: pile-up and beam hadrons

Maximize signal acceptance and minimize background:

- Particle track with small incoming angle wrt. beam axis
- SRD signal hinting to an electron
- Consistent lateral and longitudinal shower profile in ECAL
- No activity in Veto

What is background, what is signal?:

- Two methods to estimate the background surviving cuts
- First: GEANT4 MC for muon/hadron impurities and dimuon events
- Second: Background estimate based on data in A and C (A is mainly pure neutrals from ECAL shower, C likely from interactions outside the vacuum vessel)

Background estimates

Source	Expected level	Comment
Beam contamination		
$-\pi$, p, μ reactions and punchthroughs,	< 10 ⁻¹³ -10 ⁻¹²	Impurity < 1% high precision MM
bremss., π , μ -decays in flight	< 10 ⁻¹²	SR photon tag
Detector		
ECAL+HCAL energy resolution, transverse hermeticity, holes, dead material, cracks	<10 ⁻¹³	Full upstream coverage
Physical		
- hadron electroproduction, e.g. $e^{-}A - > e^{-}A^{*} + n,\pi,\rho,J/\psi^{-}$	< 10 ⁻¹³	HERA ep-data
- n punchthrough, μ inefficiency	10 12	(H1 Collaboration)
- WI process: e ⁻ Z->e ⁻ Z _{VV}	< 10-13	WI σ estimated.
Total	< 10-12	

No event in Signal region (enlarged by factor 5):

- Observation consistent with expected background
- What are the achieved limits for A' mass and mixing $\varepsilon?$

Average number of A' from Poisson distribution:

$$N_{A'} = n_{eot} \cdot n_{A'} (\epsilon, m_{A'}, \Delta E_{A'}) \cdot \epsilon_{A'} (m_{A'}, \Delta E_{A'})$$

- A' yield depends on coupling, mass and missing energy
- Signal selection efficiency slightly depends on mass and Energy

Limits on A' parameters

Excluded almost all muon (g-2) favoured region with 2 weeks data

- NA64 can reach new limits rather quick
 - 4 weeks of data taken in Oktober 2016 (3-4×10¹⁰ eot.)
 - Analysis in progress

Active target beam dump concept:

- Can probe large range of A' parameter space
- Can collect data in short time
- Has low background level in signal region

Results from 2016:

- 2×10^{9} eot. in Summer \rightarrow No A' signal observed
- Most of muon (g-2) favoured region excluded
- $3-4 \times 10^{10}$ eot. in Autumn \rightarrow Analysis in progress

2017 beamtime granted for 5 weeks:

- Improved tracking with additional Micromegas and GEMs
- Better e⁻ identification at higher intensities
- Primary goal to collect 10^{11} eot. for invisible mode (~2-3 weeks)
- If primary goal achieved,
 - \rightarrow switch to visible mode for $\chi \rightarrow e^+e^-$ decay
 - \rightarrow with extra WCAL for production and gap for decay
 - \rightarrow light Boson could explain e⁺e⁻ excess in excited ⁸Be transition
- Maybe use high intensity muon beam for search of new massive Z'
 - $\mu Z \rightarrow \mu Z Z'; Z' \rightarrow \mu \mu \text{ or } vv$ (leptonic dark photon)

Possible projects for NA64

Process	New Physics	Sensitivity
1. e ⁻ Z -> e ⁻ Z + E _{miss}		
 ◇ A´-> e+e- ◇ A´-> invisible ◇ alps ◇ milli-q 	Dark Sectors: Dark Photons and DM (g-2) _µ new particles, Charge Quantization	10 ⁻³ <ε<10 ⁻⁶ M _{A´} ~ sub-GeV e´ <10 ⁻⁵ -10 ⁻⁷
2. μ ⁻ Ζ->μ ⁻ Ζ+ Ε _{miss}		
$ \Rightarrow Z_{\mu} \rightarrow vv, \mu^{+}\mu^{-} $ $ \Rightarrow \mu \rightarrow \tau $ conversion	New gauged symmetry L_{μ} - L_{τ} and leptonic forces LFV	α _μ < 10 ⁻¹¹ -10 ⁻⁹ σ< 10 ⁻⁹ -10 ⁻⁸ /μ
3. π (K)p-> M ^o n + E _{miss}		
↔ K _L -> invisible ↔ K _S -> invisible ↔ π ⁰ , η, η -> invisible	CP, CPT symmetry B-S Unitarity, new particles: NHL, φφ, VV	Br <10 ⁻⁸ -10 ⁻⁶ , comple- mentary to K->πνν Br< 10 ⁻⁸ -10 ⁻⁷
4. pA -> X+ E _{miss}		
♦ leptophobic X	~ GeV DM	σ<10 ⁻⁷ -10 ⁻⁸ /p

Search for dark sectors in missing energy events

Thank You for your attention!

- [1] S.N. Gninenko, N.V. Krasnikov, M.M. Kirsanov, D.V. Kirpichnikov, Missing energy signature from invisible decays of dark photons at the CERN SPS, Phys. Rev. D 94, 095025 (2016), arXiV:1604.08432 [hep-ph]
- [2] NA64 Collaboration, High purity 100 GeV electron identification with synchrotron radiation, arXiV:1703.05993 [hep-ex]
- [3] NA64 Collaboration, Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118, 011802 (2017), arXiV:1610.02988 [hep-ph]

Search for dark sectors in missing energy events

Dimuon benchmark

Rare Dimuon production in em-shower as benchmark channel:

- Used as a cross-check for background estimation
- Used to estimate the signal selection efficiency
 - Compare observed number of muons in HCAL to MC
 - Over all good agreement
 - Showed dependency on beam intensity (ECAL pile-up)

Preshower trigger

• e + A' events very seldom deposit much energy in preshower

- Electrons and pions can deposit higher amounts of energy
- Veto on high preshower energies reduces the trigger rate

Signal selection efficiency

Geometrical acceptance	0.97
Veto 2 efficiency	0.96
HCAL efficiency	0.94
SRD efficiency	0.97
Trigger efficiency	0.95
BGO (PbSc) pileup	0.92 (0.93)
Trigger deadtime	0.93
Total efficiency	~0.69

Tracking and Momentum Reconstruction

Visible search

- Tungsten Scintillator electromagnetic calorimeter (WCAL) as target
- $A' \rightarrow e^+e^-$, search for two track events
- Proposal and first results: CERN-SPSC-2017-016 ; SPSC-SR-211