Light dark matter in the sky

Aaron Vincent

LDMA '17 La Biodola, 26 May 2017

Imperial College London

Indirect searches for dark matter

Overview

- 1. 511 keV: positrons from the dark side ACV, Cline, Martin 2012 Siegert, ... ACV 2016
- 2. Cosmology v. the MeV WIMP

Escudero,..., ACV 2015 Wilkinson, Boehm, McCabe, ACV 2016

3. PeV signals of low-mass dark matter at IceCube Argüelles, Kheirandish, ACV 2017

Indirect searches for dark matter

511 keV: INTEGRAL/SPI signal

511 keV: INTEGRAL/SPI signal

511 keV: INTEGRAL/SPI signal

Siegert et al. 2016

Prantzos et al. 2011

Morphology?

Spectrum?

Morphology?

Spectrum?

Rate?

Spectrum?

require **m** <~ **10 MeV** to avoid gamma ray overproduction

Rate?

Spectrum?

require **m <~ 10 MeV** to avoid gamma ray overproduction

Rate?

Indirect searches for dark matter

Local Cosmic Ray flux

Galactic center

Dwarf galaxies

The Sun

Galaxy Clusters

Indirect searches for dark matter

Search for 511 keV Emission in Satellite Galaxies of the Milky Way with INTEGRAL/SPI

Thomas Siegert^{1*}, Roland Diehl^{1,2}, Aaron C. Vincent³, Fabrizia Guglielmetti^{1,4}, Martin G. H. Krause⁵, and Celine Boehm³

$$\phi_{511} \propto \langle \sigma v \rangle \times J \qquad J = \int d\Omega \int_{l.o.s.} \rho_{DM}^2 dx$$

$$J_{dwarf} \sim [10^{-3}, 10^{-2}] \times J_{MW}$$

INTEGRAL not sensitive to these fluxes, but we can still look

Reticulum II

Recently discovered, and subsequently seen in gamma rays with Fermi LAT (Hooper & Linden 2015, Geringer-Sameth et al 2015)

Reticulum II

Recently discovered, and subsequently seen in gamma rays with Fermi LAT (Hooper & Linden 2015, Geringer-Sameth et al 2015)

If light DM is producing 511 keV signal, cross section is 100x too large

$$\dot{n}_{e^+,\text{Ret II}} = 10^{43} \text{s}^{-1}$$

 $\dot{n}_{e^+,\text{GC}} = 10^{43} \text{s}^{-1}$

??!

Indirect searches for dark matter

Could the galactic signal be a light WIMP?

$$\langle \sigma v \rangle \simeq 5 \times 10^{-31} \left(\frac{m_{\chi}}{\text{MeV}} \right)^2 \text{cm}^3 \text{s}^{-1} \left(\frac{m_{\chi}}{10^4} \right)^{-10^4} \left(\frac{m_{\chi}}{10^4} \right)^{-10^4} \text{cm}^{-10^4} \left(\frac{m_{\chi}}{10^4} \right)^{-10^4} \left(\frac{m_{\chi}}{10^4} \right)^$$

Require some extra piece to complete the relic abundance cross section

$$\langle \sigma v \rangle \simeq 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$$

could have s-wave annihilation to
$$e^{\pm} \langle \sigma v \rangle = a + b \left(\frac{v}{c}\right)^2$$

s-wave annihilation to neutrinos

Entropy transfer when light DM decouples

Entropy transfer when light DM decouples

+ rescattering of CMB light during propagation to earth

Probably not a thermal relic but we can look at the effect of any interaction between DM & the light particles

Power "bled away" on small scales

by neutrinos streaming away; increased correlations on large scales

Generic scattering cross section:

$$c.f. \sigma_{Thomson} = 10^{-26} \text{cm}^2$$

Mangano 2006 + many others

 $\sigma_{DM-\nu} \propto E_{\nu}^2$

IceCube has seen events above a PeV....

$$\left(\frac{\text{PeV}}{T_{\nu,recomb.}}\right)^2 \sim 10^{30}$$

Let's look there!

53 high-energy neutrinos in 4 years **IceCube Neutrino** IceCube South Pole Station **Observatory** AMANDA Skiway Dark sector Geographic South Pole IceCube Lab IceTop 50 m j IceCube Array AMANDA II Array (precursor to IceCube) 1450 m DeepCore Eiffel Tower 324 m 2450 m 2820 m **Bedrock**

19

53 high-energy neutrinos in 4 years

IceCube Neutrino Observatory

19

Isotropic extragalactic neutrino flux

Isotropic extragalactic neutrino flux

Anisotropic deflection/energy loss

In practice

b, I: galactic latitude, longitude

column density:
$$\tau(b,l) = \int_{l.o.s} n_{\chi}(x;b,l) \ dx.$$

Solve to find flux at earth at energy E and direction (b,I) 21

What about cross section?

$$\sigma_{DM-\nu} \propto E_{\nu}^2 \xrightarrow{?} \left(\frac{\text{PeV}}{T_{\nu,recomb.}}\right)^2 \sim 10^{30}$$

What about cross section?

$$\sigma_{DM-\nu} \propto E_{\nu}^2 \longrightarrow \left(\frac{\text{PeV}}{T_{\nu,recomb.}}\right)^2 \sim 10^{30}$$
 No!

What about cross section?

The low energy approximation does not work at a PeV!!

Begin to resolve microphysics: need more concrete model

Two fiducial simplified models

Fermion DM, vector mediator: similar to a leptophillic Z' model Scales strongly with E

Scalar DM, fermionic mediator:

e.g. sneutrino dark matter, neutralino mediator. Resonant Behaviour (s-channel)

Dark matter column density seen from Earth

Dark matter column density seen from Earth

Simulation including effects of detector, Earth

Energy & morphology

Energy Angle from galactic centre 60 Atmospheric muons -Atm. ν $E_{dep} > 60 {
m TeV}$ 10^{2} Atmospheric ν Atm. + Astro., no DM50 $(S_{\chi},S_{\phi})=(1/2,1),g=1$ -Atm + Astro. ν , no DM $(S_{\chi}, S_{\phi}) = (1/2, 1), g = 1$ $-(S_{\chi},S_{\phi})=(1/2,1),g=\sqrt{5}$ Events per 1347 days $_{001}$ $_{01}$ $_{01}$ $-(S_{\chi}, S_{\phi}) = (1/2, 1), g = \sqrt{5}$ $(S_{\chi}, S_{\phi}) = (0, 1/2)$ 40 $(S_{\chi}, S_{\phi}) \equiv (0, 1/2)$ $dN/d\cos\theta$ 30 20 10^{-2} 10 10^{-3} 0 10^{2} 10^{3} 10^{4} 10^{1} 30 60 90 1201500 E_{dep}/TeV Angle θ from galactic centre (deg) Resonance @ 810 TeV

25

+IceCube HESE events

180

Energy & morphology

Energy

Angle from galactic centre

☐ IceCube HESE events

Compare Likelihood to real events

$$\mathcal{L}(\{t, E, \vec{x}\}|\vartheta) = e^{-\sum_{b} N_{b}} \prod_{i=1}^{N_{obs}} \sum_{a} N_{a} P_{a}(t_{i}, E_{i}, \vec{x}_{i}|\vartheta),$$

Parameters:

$$m_{\chi} \ m_{\phi} \ g \ N_{astro} \ N_{atmo} \ N_{\mu^{\pm}}$$

*IceCube data

Limits from IceCube

Only 53 events: already eating into cosmology parameter space

Indirect searches for dark matter

- Over 4 decades after its first detection, 511 keV signal from the galactic centre is still there!
- There's a similar (but incompatible?) signal in two dwarf galaxies
- Cosmology makes a DM interpretation difficult
- PeV neutrinos from IceCube give us complementary and competitive information

Thank you

Name	d	<i>F</i> ₅₁₁	M _{Dun}	M_V	σ	l	b	T_{Exp}	Ref.
Canis Major ^b	9	< 4.1	> 49	-14.4	_	239.99	-8.00	0.62	(1),(16),(17)
Segue 1^b	23	< 12.4	0.26	-1.5	_	220.48	50.43	0.16	(1),(12),(60),(61),(62),(63)
Sagittarius Dwarf	28	2.2(1.0)	190	-13.4	2.3	5.57	-14.17	7.00	(1),(44),(45),(46)
Reticulum II ^c	30	17.0(5.4)	0.24	-2.7	3.1	266.30	-49.73	0.55	(22),(23),(27),(42),(43)
Ursa Major II ^c	34	4.1(2.3)	3.9	-4.2	1.9	152.46	37.44	1.67	(1),(57),(58),(59)
Segue 2^{c}	35	< 14.4	0.23	-2.5	_	149.43	-38.14	0.20	(1),(48)
Willman 1 ^c	42	7.3(7.1)	0.39	-2.7	1.0	158.58	56.78	0.45	(1),(62),(64),(65)
Coma Berenices ^c	44	1.6(1.7)	0.94	-4.1	1.0	241.89	83.61	2.93	(1),(6),(12),(18)
Boötes III	48	< 4.4	> 0.017	-5.8	_	35.41	75.35	1.93	(1),(8),(9),(10)
Boötes II ^a	49	< 5.8	3.3	-2.7	_	353.69	68.87	1.92	(1),(5),(6),(7)
Large Magellanic Cloud	50	< 3.6	> 1500	-18.1	_	280.47	-32.89	4.22	(1),(37),(38)
Tucana II ^c	57	3.8(8.4)	N/A	-3.8	0.5	328.08	-52.32	0.22	(22),(23)
Small Magellanic Cloud	61	0.6(2.8)	1400	-16.8	0.2	302.80	-44.30	1.38	(1),(37),(52),(53)
Boötes I ^{a c}	62	8.5(2.9)	0.81	-6.3	3.0	358.08	69.62	1.85	(1),(2),(3),(4)
Ursa Minor ^c	73	< 5.8	9.5	-8.8	_	104.97	44.80	1.30	(1),(29)
Horologium I ^c	79	6.7(4.4)	0.55	-3.4	1.6	271.39	-54.73	0.43	(22),(23),(27)
Draco ^c	82	< 3.8	11	-8.8	_	86.37	34.72	1.57	(1),(19),(20),(21)
Phoenix II	83	< 16.6	N/A	-2.8	_	323.68	-59.75	0.19	(22),(23)
Sculptor ^c	83	< 11.6	14	-11.1	_	287.54	-83.16	0.22	(1),(47)
Sextans ^c	85	6.5(5.3)	10.6	-9.3	1.2	243.50	42.27	0.12	(1),(49),(50),(51)
Eridanus III	87	7.3(5.1)	N/A	-2.0	1.5	274.95	-59.60	0.38	(22),(23)
Indus I	100	6.2(3.9)	N/A	-3.5	1.6	347.15	-42.07	0.26	(23),(23)
Ursa Major I ^c	101	< 9.2	11	-5.5	_	159.43	54.41	0.42	(1),(6),(54),(55),(56)
Carina ^c	103	0.6(3.6)	6.3	-9.1	0.2	260.11	-22.22	0.66	(1),(14),(15)
Pictoris I	114	< 7.4	N/A	-3.1	_	257.29	-40.64	0.46	(22),(23)
Grus I ^c	120	20.8(9.1)	N/A	-3.4	2.3	338.68	-58.25	0.12	(22),(23)
Hercules	136	9.7(5.5)	2.6	-6.6	1.8	28.73	36.87	0.31	(1),(6),(12),(26)
Fornax ^c	139	16.9(9.6)	56	-13.4	1.8	237.10	-65.65	0.11	(1),(24),(25)
Canes Venatici II ^c	153	5.0(2.2)	0.91	-4.9	2.3	113.58	82.70	2.44	(1),(6),(12),(13)
Leo IV^c	155	< 5.4	1.3	-5.8	_	265.44	56.51	1.84	(1),(6),(12),(13)
Pisces II ^c	182	2.9(4.3)	> 0.0086	-5.0	0.7	79.21	-47.11	0.79	(1),(39),(40),(41)
Leo V^c	186	3.7(3.3)	1.1	-5.2	1.1	261.86	58.54	1.96	(1),(35),(36)
Canes Venatici I ^c	216	1.2(2.2)	19	-8.6	0.6	74.31	79.82	1.84	(1),(6),(11)
Leo II ^c	218	5.0(5.5)	4.6	-9.8	0.9	220.17	67.23	0.35	(1),(31),(32)
Leo I ^c	246	15.8(7.4)	12	-12	2.2	225.99	49.11	0.12	(1),(28),(29),(30)
Eridanus II	380	< 21.6	N/A	-6.6	_	249.78	-51.65	0.10	(22),(23)
Leo T^c	412	6.1(6.5)	3.9	-8.0	1.0	214.85	43.66	0.19	(1),(33),(34)
Phoenix I	418	4.3(5.7)	9.7	-9.9	0.8	272.16	-68.95	0.36	(1),(66),(67),(68),(69)
NGC 6822	498	1.4(1.6)	3500	-15.2	0.9	25.34	-18.40	2.25	(1),(29),(69),(70),(71),(72)