

Andrea Pocar University of Massachusetts, Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Liquid xenon (LXe) and liquid argon (LAr)

for low-background physics

Noble liquid detectors have risen to be a leading technology in low-energy rare event searches over the past ~decade (WIMP dark matter, 0vββ decay)

Strenghts:

- Powerful combination of low energy threshold, energy resolution, event ID
- LXe/LAr are excellent scintillators
- Background discrimination (technique-specific)
- Scalability
- Inline purification
- Large 'empty' volume filled with clean, re-purifiable LXe/LAr
- 'Dirty' components pushed away from fiducial volume (selfshielding)
- Selected materials, reduce mass where possible
- Apply detector design concepts developed for low energy neutrinos to searches for WIMPs

Noble liquids are very powerful WIMP-searching machines with mass larger than a few GeV/c²

Andrea Pocar - UMass Amherst

dual phase LXe: current leaders for WIMP searches

Dual-phase LXe TPC

adapted from Gianmarco Bruno and Ethan Brown

- S2/S1 ratio provides particle ID
- Top-array hit pattern provides the vertex position in the X-Y plane
- The time difference provides the depth

XENON1T at LNGS

adapted from Gianmarco Bruno

Andrea Pocar - UMass Amherst

LY is x2 higher than XENON100

 $(1.93 \pm 0.25) \times 10^{-4}$ events/kg/d/keVee

LDMA 2017 – La Biodola, Isola d'Elba – 25 May 2017

XENON1T —> nT sensitivity projections

adapted from Gianmarco Bruno and Marc Schumann

Andrea Pocar - UMass Amherst

The XENON detector genealogy

(2015)

XENON100

Target: 62 kg

Limit: ~10-45

Total Xe: 162 kg

Fiducial: 34/48 kg

adapted from G. Bruno

(2022?)

XENONnT

Target: 6 ton

Limit: ~10-48

Total Xe: 7.5 ton

Fiducial: 4.5 ton

(2028?)

DARWIN Total Xe: 50 ton Target: 40 ton Fiducial: 30 ton Limit: ~10⁻⁴⁹

(2019)

XENON1T

Target: 2 ton

Limit: ~10-47

Fiducial: 1 ton

Total Xe: 3.5 ton

- 200 more PMTs are needed
- Total Xe mass: 7.5 t
- Rn removal system
- Projected to start science in 2019

(2007)

XENON10 Total Xe: 25 kg Target:14 kg Fiducial: 5.4 kg Limit: ~10⁻⁴³

Andrea Pocar - UMass Amherst

9

neutrino "floor"

PandaX program

adapted from Jianglai Liu, Pheno 2017

- PandaX-II running after extended downtime
- Preparing hall at CJPL-2 for PandaX-4T with water tank (~10⁻⁴⁷ cm², commissioning ca. 2020)
- Goal: 30T experiment -> neutrino floor

Andrea Pocar - UMass Amherst

$LUX \rightarrow LZ (LUX + Zeplin)$ program at Sanford Lab

adapted from Attila Dobi

- LUX decommissioned in 2016 (~400 live days, 3.4×10^4 kg d exposure)
- 2nd best SI limits

PRL 118, 021303 (2016)

- innovative calibrations and Kr-85 bg reduction and control
- LUX -> LZ

Tritium Beta Spectrum Measured in LUX

LZ at Sanford Lab

cross section

6e-48 cm²

30

 5 keV_{ee}

25

22 keV_{nr}

LZ projected sensitivity (SI, 5.6 Tonnes, 1000 live days)

Low-mass WIMPs

	S1 + S2	S2 - only
Nuclear Recoils	• Vanilla WIMPs	 Light(er) WIMPs Asymmetric Dark Matter
Electron Recoils	 ~keV axion-like particles 	 subGeV hidden sector models

- no z-coordinate
- limited bg rejection
- very sensitive to impurities
- extraction efficiency
- single electron bg hard to model

Single phase LXe: XMASS at Kamioka

- 835 kg of LXe, 630 PMTs
- relative simplicity
- limited discrimination
- Key requirements:
 - low external background
 - low radon
 - fiducialization

issues with PMT bg

 early attempt at PSD in small-scale setup

adapted from A. Takeda

XeSAT 2017

annual modulation study

- complementary searches at higher masses
- different systematic effects
- heading for the neutrino floor
 - → Argon is inexpensive and relatively "easy" to purify to levels required for DM searches - true for O₂, N₂, etc. and **also for radon**
 - Singlet/triplet ratio and lifetimes in argon allow extremely good scintillation PSD (β/γ vs nuclear recoil rejection of 10¹⁰) – low background single phase (scintillation-only) detector possible
 - → TPC also exploiting charge collection (S1/S2) increases background rejection (β/γ vs recoil + position reconstruction)
 - ³⁹Ar approx. 1 Bq of β decays per kg of argon must be reduced or rejected in analysis

Pulse Shape Discrimination (S1) in LAr

Boulay and Hime, Astropart. Phys. 25, 179 (2006)

Electron and nuclear recoils produce different excitation densities in the argon, leading to different **ratios of singlet and triplet excitation states**

Andrea Pocar - UMass Amherst

planning to collaborate on future program:

- Completion of current science and R&D programs by each collaboration (DS-50, DEAP-3600, MiniCLEAN, ArDM)
- Joint collaboration on DS-20K at LNGS, including Low Radioactivity Argon (operation starting 2021) and SiPM photodetectors
- Joint collaboration on future multi-hundred-tonne LAr detector, site TBD (mid-2020's)

Single phase LAr: DEAP-3600

adapted from Fabrice Retière

, 3600 kg of Liquid Argon

1000 kg Fiducial mass

Wavelength shifter (distilled TPB)

Vessel

WIMP search

Distinguish nuclear from electron recoils by Pulse Shape Discrimination (PSD) of the scintillation signal

(very powerful in Argon)

· 0 1714m

adapted from Mark Boulay

DEAP-3600

- Room-temperature PMTs
- Ultra-low bg acrylic
- Exposure in line with XENON1T
- Very high statistics PSD

Background	Fiducial No. Events in Energy ROI – 3 live years
Neutrons	<0.2
Surface α's	<0.2
³⁹ Ar β's (natural argon)	<0.2

designed for 1-tonne fiducial mass 3 live years

DEAP-3600 status

- Detector filled since Nov 1, 2016
- Collecting DM search data so far > 0.5E6 kg-days raw exposure
- So far stable performance good light yield
- Taking physics and calibration data
- plan: continue data collection for ~4 years
- Analysis from the 1st fill data ongoing physics publication expected this year

Single-phase LAr: MiniCLEAN at SNOLAB

Current Project Status

- Exceptional purity: Gas triplet time constant >3.6 μs
- Detector atmospheric liquid argon fill underway

Run plan (2017/18)

- 3 months fill and final commissioning
- 3 months baseline technical demonstration
 - light yield, background levels, position reconstruction,...
- 6 months ³⁹Ar spiked data
 - Pulse Shape Discrimination R&D at 10⁻¹⁰ level
- Lead by Pacific Northwest National Lab since 2014
 - Completion of detector construction (2015)
 - Cool down and commissioning (2016)
 - Favorable Operations Readiness Review (2016/17)
 - Leads project management, operations, data analysis & ³⁹Ar spike program
- Informs technology choices for 100+ ton experiment

ArDM — a ton-scale LAr TPC for DM research

Andrea Pocar - UMass Amherst

LDMA 2017 – La Biodola, Isola d'Elba – 25 May 2017

DARKSIDE

AAr vs UAr. Live-time-normalized S1 pulse integral spectra at Zero field. ³⁹Ar reduction factor of ~1400

Low level of ³⁹Ar allows extension of DarkSide program to ton-scale detector.

- pioneered the use of low radioactivity argon from underground sources
- introduced the use of an active neutron veto design
- low bg operation of a LAr TPC
- high light yield ~8 p.e./ keVee

- Argon has good sensitivity in high-mass region
- DS-20K (20 tonnes UAr) competitive with LZ — start operation 2021
- 1000-tonne years (future detector) reaches down to neutrino floor
- Complimentary to xenon only other target allowing such large exposure
- β/γ discrimination: solar pp neutrino ES background not a concern — in X1T, LZ expected dominant bkg at ~0.5 event per tonne-year after recoil discrimination

DS-20k at LNGS

- 20 tonnes low radioactivity Ar
- Scale-up from DS-50
- Global LAr community
- Advanced design (Yellow Book)

- background-free, 100 tonnes-yr exposure
- SiPMs replace cryogenic PMTs (single-p.e. 5x5 cm² tile demonstrated in March 2017)
- complementary to LHC searches

Urania (Underground Argon):

- Expansion of the argon extraction plant in Cortez, CO, to reach capacity of ~150 kg/day of Underground Argon
- Aria (UAr Purification):
 - Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon

Urania and ARIA

- 1000 tonne-yr, background-free exposure reaching the neutrino floor
- Sensitivity to WIMPs > few tens of GeV/c^2
- mid 2020's
- Large collaboration will pursue an integrated program
- Single/dual-phase design under consideration
- Physics program largely complementary with the LHC and to the expanding effort in searching low-mass WIMPs
- Solar neutrino program possible

- LXe and LAr detectors are leading players in the search for WIMP dark matter heavier than a few GeV
- The tonne-scale dark matter search is under way with XENON1T and DEAP-3600 — more to follow in the next few years
- LXe 2-phase TPCs allow for single electron sensitivity for lowmass WIMPs (~GeV/c² scale)
- Future detectors with target mass of tens —> hundreds of tonnes are planned to search for WIMPs down to the neutrino floor
- Compelling, complementary physics program to the LHC (and searches for light dark matter)

Spin-Dependent WIMP interactions

- Spin-dependent WIMP-neutron cross-section on ¹²⁹Xe and ¹³¹Xe
- complementary to collider searches at lower masses

LXe TPCs: sensitivity to axion-like particles (ALPs)

Axion-Like Particles (ALP)

- Sensitivity to axions and ALPs via the axioelectric effect:
 - Nonrelativistic galactic ALPs (DM candidates)
 - ALPs emitted by bremss/Compton in the Sun
- Technique pioneered in Xenon100 (see arXiv:1404.1455)

adapted from Maria Elena Monzani

PSD in LXe (XMASS R&D)

PSD study with a small setup

XMASS: annual modulation results

XENON100 — 4-year annual modulation

DS-20k SiPMs

- Photon Detection Efficiency (PDE): 45% requirement met and surpassed
- Dark Count Rate (DCR): 0.1 Hz/mm² requirement met and surpassed
- Challenge in tiling due to 50 pf/mm² capacity. Signal-to-Noise Ratio (SNR) rapidly decreases with increasing surface. The steps:
 - 2×2 cm² tile: fully demonstrated September 2016
 - 5×5 cm² tile: fully demonstrated March 2017

Prototype column allows 10 kg/day purification Full column: 100 kg/day x10 reduction per pass

