Beam Dump Experiments at JLab and SLAC

- Brief History (E137 at SLAC)
- BDX at Jefferson Lab
 - Detector and signal
 - Backgrounds
- Expected Sensitivity

Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration Light Dark Matter at Accelerators – May 24-28, 2017

SLAC E137 Beam Dump

"Search for neutral metastable penetrating particles"

- Axions
- Photinos
- EM calorimeter and multi-wire proportional chambers
- Masses < 100 MeV, small production σ , long lifetime

Bjorken PRD 38 (1988) 3375

FIG. 2. Layout of SLAC experiment E137.

SLAC E137 – LDMA limits

SLAC E137 – LDMA limits

Beam Dump Experiments

Izaguirre PRD 88 (2013) 114015

 $\sqrt{\alpha_n}$

- Parasitic to experimental program. Use electrons that are otherwise thrown away
- Produce "invisible decays" of heavy photon (Beam Dump)

- Detect dark matter particle interaction (Experiment Detector)
- Signature is EM shower E > 0.5 GeV

$$y = \epsilon^{2} \alpha_{D} (m_{\chi}/m_{A'})^{4}$$

$$Yield \sim y^{2} \times \frac{1}{\alpha_{D}} \times \left(\frac{m_{A'}}{m_{\chi}}\right)^{4}$$

$$(m_{A'} > 2 m_{\chi})$$
efferson Lab
Eton S. Smith LDMA 2017 May 24-28, 2017

Kinematics

- Main features follow from thin-target kinematics and e⁻ energy loss and secondary emission in dump
- A' emitted with forward kinematics, $E_{A'} \sim E_{beam}$
- High-energy χ beam strongly focused along primary beam direction
- e- in dump: lower electrons in shower contributes broadening of $\boldsymbol{\chi}$ kinematics
- χ -e⁻ elastic scattering detected in detector with E_{shower} > 0.5 GeV

Jefferson Lab site

Upgrade Goals

- Accelerator: 6 GeV \Rightarrow 12 GeV
- Halls A,B,C: e⁻ <11 GeV, < 100 μA
- Hall D: e^- 12 GeV $\Rightarrow \gamma$ -beam

Jefferson Lab

Upgrade Status

99.7% Complete

Jefferson Lab site

Upgrade Goals

- Accelerator: 6 GeV \Rightarrow 12 GeV
- Halls A,B,C: e⁻ <11 GeV, < 100 μA
- Hall D: e^- 12 GeV $\Rightarrow \gamma$ -beam

Upgrade Status

99.7% Complete

Location of BDX at JLab

- Highest beam current ~ 65 μ A
- Integrated charge ~ 10²² EOT (41 weeks)
- E_{beam} up to 11 GeV
- New underground facility ~\$1.5M

Location of BDX at JLab

- Highest beam current ~ 65 μA
- Integrated charge ~ 10²² EOT (41 weeks)
- E_{beam} up to 11 GeV
- New underground facility ~\$1.5M

Detector

- Signal requirements
 - Sensitivity to GeV EM showers
 - Low thresholds
 - Compact footprint and good segmentation
- Background rejection
 - High efficiency, fast timing
 - Active veto
 - Passive veto

Plastic scintillator Lead Plastic scintillator

Crystal based detector

- BUT... multiple detectors can be stacked behind each other!
- Add complementarity with DRIFT
 - Completely different technology and sensitivities
 - Directionality

See this session: Dan Snowden-Ifft

BDX inner detector

BDX detector: state-of-the-art EM calorimeter, CsI(TI) crystals with SiPM-based readout. Possibility to re-use existing BaBar CsI(TI) crystals (informal agreement already discussed) Detector design:

- \simeq 800 CsI(Tl) crystals, total interaction volume $\simeq 0.5m^3$
- Modular detector: change front-face dimesions and total lenght by re-arranging crystals

Arrangement:

- 1 module: 10x10 crystals, 30-cm long. Front face: 50x50 cm²
- 8 modules: interaction length 2.6 m

Signal:

- EM-shower, $E_{thr} \simeq 300$ MeV, anti-coincidence with IV and OV
- Efficiency (conservative): O(10%) refined cuts on EM shower directionality can improve this

A. Celentano

BDX active veto

Active veto requirements: high efficiency for charged particles detection, hermeticity, compactness

Technology: two layers of plastic scintillator counters, made of different paddles, each read by WLS fibers + SiPMs (IV) / PMTs (OV). 5-cm lead vault between two layers to shield photons

R&D:

- Veto efficiency for charged particles measured with cosmics-ray setup, in different positions: $\overline{\varepsilon} > 99\%$
- On-going effort to replace light guides by slim wavelength-shifting plastics to reduce dead spaces and simplify mechanical supports

Signal: χ interaction in detector

Signal Efficiency ~ 20% for E_{thresh} > 0.3 GeV

Parameters: M_{χ} =10 MeV, $m_{A'}$ =100 MeV

Cosmic-ray Backgrounds

5. Smith LDMA 2017 May 24-28, 2017

Cosmic-ray Backgrounds

Detector simulations (GEANT4 and FLUKA)

Beam Backgrounds

Estimated neutrino fluxes at the detector

- Expect < 10 v_e background interactions for 10²² EOT
- There are 10 times more v_{μ} interactions, but they are identifiable and can be used to normalize the ν rate.

Jefferson Lab

Test plan to measure muon flux

- We have a test plan to measure the muon flux behind the existing Hall A beam dump.
- The measurements will validate MC and help understand backgrounds

Background summary

Cosmic-ray Backgrounds

- Measured (beam-off) and subtracted
- Several meters of overburden
- Time uncorrelated (CW beam prevents fast time coincidence)

Solution: Measurements with BDX prototype and expected overburden, extrapolation to Jlab. Measured during experiment and beam-off

- Beam-related Backgrounds
 - Detection thresholds define the background level
 - Charged particles easy to shield, neutrals more difficult
 - Low-energy particles are below threshold

Solution: Heavy Shielding Simulations for irreducible backgrounds

Beam-related background	
Energy threshold	N _ν (285 days)
300 MeV	~10 counts

For E_{thresh} >0.3 GeV v are ultimate background

Cosmic sensitivity	
Energy threshold	√Bg (285 days)
300 MeV	<2 counts

BDX Reach

 10^{-4}

10-5

10

10-

 ϵ^2

 $(g-2)_{\mu} > 5\sigma$

 $(g-2)_{\mu} \pm 2\sigma$

Leptophilic Inelastic DM, $m_{\gamma} = 10 \text{ MeV}$, $\Delta = 50 \text{ MeV}$, $\alpha_D = 0.1$

- BDX can be conclusive for some Light Dark Matter scenarios
- The BDX sensitivity has been evaluated assuming 10²² EOT

Summary and Status

- Beam-dump experiments are sensitive to invisible decays of dark photons, which probe regions of the parameter space that are not covered by visible decays.
- Beam-dump experiments at electron facilities have significantly reduced neutrino backgrounds compared to hadron beams
- The BDX experiment is conditionally approved to run parasitically at Jefferson Lab for 41 weeks at ~11 GeV, which will allow it to collect ~10²² electrons on target.

Backup Slides

Visible vs Invisible: Complementarity

Jefferson Lab

Elton S. Smith LDMA 2017 May 24-28 , 2017

Invisible decay sensitivity

Figure 35: Same as Fig. 34 only here $m_{\chi} = 68$ MeV and we adopt $\alpha_D = 0.1$ and $\alpha_D = \alpha_{EM}$ for the two panels. This choice of m_{χ} represents the kinematic limit beyond which LSND can no longer produce pairs of χ via $\pi^0 \to \chi \chi$. Note that for $m_{A'} < 2m_{\chi}$ the dark photon will no longer decay to DM pairs and may be constrained **Jeffer** by visible searches, but this is model dependent.

Inelastic DM scenario

A' Production in Target

iDM Scattering in Detector $\chi_1 \qquad \chi_2 \qquad \chi_2 \qquad \chi_1 \qquad \chi_1 \qquad \chi_1 \qquad \chi_2 \qquad \chi_2 \qquad \chi_2 \qquad \chi_1 \qquad \chi_2 \qquad \chi_1 \qquad \chi_2 \qquad \qquad \chi_2 \qquad \chi_2$

 Z,p,n,e^-

Figure 5: Top: Same as Fig. 2, but for an *inelastic* Majorana DM scenario in which the A' decays to a pair of different mass eigenstates. The unstable χ_2 decays in flight, so the flux at the detector is dominated by χ_1 states which upscatter off electron, nucleon, and nuclear targets (bottom) to regenerate the χ_2 state. Subsequently, the χ_2 promptly de-excites in a 3-body $\chi_2 \rightarrow \chi_1 e^+ e^-$ process, depositing significant \sim GeV scale electromagnetic signal inside the BDX detector.

Signal detection

C1 elevation for BDX

