Claudia Frugiuele

Dark matter beams @ neutrino facilities

Light DM @ isola d'Elba, 26/05/2017

New physics is taking longer than we thought to show up.

No new particles

Many new ideas have been explored in the last few years motivating new experimental strategies

DM beyond WIMPS

Neutral naturalness Relaxion ..

No new particles

Relaxion

A new paradigm, no partners! The Higgs was originally heavy and it then evolved to be light in the early universe.

In this scenario a light spin-0 particle plays the central role, and not new physics at the electroweak scale. [Graham, Kaplan, Rajendran, 2014]

> Naturalness problem at the "low energy frontier"

The relaxion mass is not fixed. It could be a sub-eV as well as few GeV range particle!

Broad experimental program is necessary!

MeV-GeV relaxion

In general there is a mixing between the Higgs boson and the relaxion. We can look for it in many existing experiments!

[Flacke,CF, Fuchs,Gupta,Perez 2016]

MeV-GeV relaxion

In general there is a mixing between the Higgs boson and the relaxion. We can look for it in many existing experiments!

[Flacke,CF, Fuchs,Gupta,Perez 2016]

The solution to the hierarchy problem of the electroweak scale might come from a discovery at SPS instead of at the LHC!

Going back to light DM

Traditional direct detection experiments and the LHC have limited sensitivity to sub-GeV dark matter masses

Need of a new experimental program

(a) Electron-light dark matter scattering direct detection experiments.

(b) Neutrino facilities to probe light dark matter-nucleon interactions

Great complementarity!

Neutrino facilities physics goal: \mathcal{V} masses and mixings

A new goal: discover light dark matter

[Batell, Pospelov and Ritz, 2009]

How is a DM beam produced?

Assume dark matter interacts with quarks via a new force mediated by a Z' boson with mass in MeV-GeV range

• Production via meson decay

• Direct production

NLO process $pp \to Z'j$

How do we detect DM ?

dark matter-nuclei scattering inside the neutrino near detector Main challenge: suppression of neutrino background

DM searches @ MiniBooNE

MiniBooNE:800 tons detector

- Light dark matter search published by the collaboration February 2017 [A.A. Aguilar-Arevalo et al. 2017]
- Strong constraints for sub GeV Z' (see Gordan's talk)
- Light dark matter program calls for a special run to suppress the neutrino background
 What are the possibilities at other neutrino facilities?

Main injector facility @ FNAL

[Dobrescu, CF 2014] [Dobrescu, Coloma, CF, Harnik 2015] [CF 2017]

What are the physics opportunities of a higher proton beam?

We can produce a large number of Z' gauge bosons with mass up to 7-8 GeV

DM detector signal

DM enters the detector with high energy

Characteristic signal is deep inelastic scattering with nucleons!

DM energy spectrum

DM energy peak is significantly higher than neutrino peak

NOVA & MINOS limits

NC DIS neutrinos events $\sim 10^6$ $N_{\rm POT} = 10^{21}$

NOVA & MINOS limits

NC DIS neutrinos events $\sim 10^6$ $N_{\rm POT} = 10^{21}$

Main injector facility

MiniBooNE is an off axis detector for the NuMI facility!

Off-axis detectors for DM

MiniBoonNE's location with respect to the Main injector beam is ideal

Off-axis neutrino background

The energy of neutrinos is too

small to give rise to numerous deep inelastic scattering events

Projected sensitivity

Ideal position for a future LBNF detector

Looking at the entire region

CF, 2017 only considering pp->Z'j

More to explore

- MiniBooNE dedicated analysis (including systematics, etc) using Main Injector data?
- MiniBooNE prospects for non-minimal dark sectors using Main Injector data (interesting projections for the 8 GeV run Izaguirre et al., 2017)
- What are the prospects to probe dark matter/ nucleon coupling at SHiP (Search for Hidden Particles, the new proposed CERN proton fixed target experiment)?

Work in progress with P.deNiverville and F.Tramontano

Back up slide

SHIP projections

SHIP projections

