Visible decays; dark photons++

Maxim Pospelov

Perimeter Institute, Waterloo/University of Victoria, Victoria With Jeff Dror (Cornell), Robert Lasenby (Perimeter) 1705.06726

Outline of the talk

- 1. Introduction.
- 2. Dark photons. Variations on dark photons.
- 3. Constraints on dark photons ++
- 4. g-2 and dark scalars
- 5. Conclusions.

Intensity and Energy Frontiers

LHC can realistically pick up New Physics with $\alpha_X \sim \alpha_{SM}$, and $m_X \sim 1$ TeV, but may have little success with $\alpha_X \sim 10^{-6}$, and $m_X \sim$ GeV. ³

No New Physics at high energy thus far (?!)

No hints for any kind of new physics. Strong constraints on SUSY, extra dimensions, technicolor resonances.

Constraints on new Z' bosons push the mediator mass into multi-TeV territory.

Neutral "portals" to the SM

Let us *classify* possible connections between Dark sector and SM $H^+H(\lambda S^2 + A S)$ Higgs-singlet scalar interactions (scalar portal) $B_{\mu\nu}V_{\mu\nu}$ "Kinetic mixing" with additional U(1)' group (becomes a specific example of $J_{\mu}^{\ i}A_{\mu}$ extension) *LHN* neutrino Yukawa coupling, *N* – RH neutrino $J_{\mu}^{\ i}A_{\mu}$ requires gauge invariance and anomaly cancellation It is very likely that the observed neutrino masses indicate that Nature may have used the *LHN* portal...

Dim>4

.

 $J_{\mu}^{A} \partial_{\mu} a / f$ axionic portal

$$\mathcal{L}_{\text{mediation}} = \sum_{k,l,n}^{k+l=n+4} \frac{\mathcal{O}_{\text{med}}^{(k)} \mathcal{O}_{\text{SM}}^{(l)}}{\Lambda^n},$$

- "Effective" charge of the "dark sector" particle χ is Q = e × ε (if momentum scale q > m_V). At q < m_V one can say that particle χ has a non-vanishing EM charge radius, $r_{\chi}^2 \simeq 6\epsilon m_{V}^{-2}$.
- Dark photon can "communicate" interaction between SM and dark matter. *It represents a simple example of BSM physics*.

Dark photons ++

Let's classify them into 3 cartegories

- 1. Dark photon: technically natural, UV complete, couple to a conserved current. $\varepsilon = ---$
- 2. B-L, L_{μ} - L_{τ} , and other anomaly free combinations: all of the above, but coupling constant g_X is small somewhat unusual. Strong constraints from neutrino physics.
- 3. Models coupled to the tree-level conserved current broken by anomalies. E.g. gauged baryon number, or lepton number. Presumes cancellation of anomalies at high-energy. Nice low energy behaviour, weak constraints on gauged baryon number?
- 4. Models coupled to a non-conserved current. (e.g. vector particle coupled to an axial-vector current)
- Phenomenology-driven demand often force speculators to consider 3 and 4. (proton charge radius, ⁸Be decay anomaly)

Search for dark photons, Snowmass study, 2013

Dark photon models with mass under 1 GeV, and mixing angles ~ 10^{-3} represent a "window of opportunity" for the high-intensity experiments, not least because of the tantalizing positive ~ $(\alpha/\pi)\varepsilon^2$ correction to the muon g - 2.

Zooming in: A1, Babar, NA48

Signature: "bump" at invariant mass of e^+e^- pairs = $m_{A'}$

Babar:
$$e^+e^- \rightarrow \gamma V \rightarrow \gamma l^+l^-$$

A1(+ APEX): $Z e^- \rightarrow Z e^- V$ → $Z e^- e^+ e^-$

NA48:
$$\pi^0 \rightarrow \gamma V \rightarrow \gamma e^+e^-$$

Latest results by NA48 exclude the remainder of parameter space relevant for g-2 discrepancy.

Only more contrived options for muon g-2 explanation remain, e.g. $L_{\mu} - L_{\tau}$, or dark photons decaying to light dark matter.

Hypothetical Z' (any Z' coupled to L_{μ}) contributes constructively to cross section.

In the heavy Z' limit the effect simply renormalizes SM answer:

~8-fold enhancement of cross section

Muon pair-production by neutrinos

VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

Neutrino Tridents and W-Z Interference

S. R. Mishra, ^(a) S. A. Rabinowitz, C. Arroyo, K. T. Bachmann, ^(b) R. E. Blair, ^(c) C. Foudas, ^(d) B. J. King,

FIG. 1. Feynman diagram showing the neutrino trident production in ν_{μ} -A scattering via the W and the Z channels.

Trident production was seeing with O(20) events, and is fully consistent with the SM destructive $\mathbb{W}_{+}\mathbb{Z}$ interference.

Full result on M_{Z'} - g' parameter space

Muon pair production process excludes solutions to muon g-2 discrepancy via gauged muon number in the whole range of

 $M_{Z'} > 400 \text{ MeV}$

In the "contact" regime of heavy Z'>5 GeV, the best resolution to g-2 overpredicts muon trident cross section by a factor of ~ 8 .

Can it be improved in the future at DUNE (O(50) events /yr)???

Altmannshofer, Gori, MP, Yavin, 2014

(There are also variations of the simplest model Altmannshofer et al., C.Y. Chen et al, that can correct g-2 in a wider range of masses)

m_{z'} (GeV)

13

Recent constraint from BaBar on L_{μ} - L_{τ}

- Absence of peaks in invariant mass improves constraints in 210 MeV 4 GeV window.
- Below 2muon threshold, $L_{\mu}-L_{\tau}$ model is the most difficult: Z' \rightarrow neutrinos. NA64 with muons, or LDMX?

nt on self-interaction?

s and simulations seem to point to problems ures (also known as "too-big-to-fail" problem). problem (it is an astrophycist-dependent

force, at 1 cm²/g level, seems to help, as it f DM (which is a reported problem).

Example of parameter space that creates a core and solves the problem (from Tulin, Yu, Zurek) for $\alpha_d = 0.1$

Some of the parameter space is within reach of B-factories.

Dark matter bound states at B-factories

• If $\alpha_d > 0.2$, the sub-5 GeV Dark matter *can increase the sensitivity to dark force* via production of "dark Upsilon" that decays producing multiple charged particles

3 pairs of charged particles appear "for free" once Upsilon_dark is produced. This is limited by previous searches of "dark Higgsstrahlung" by BaBar and Belle. An, Echenard, MP, Zhang, PRL, 2016

Vector metator's coupled to non-conserved currents

Naïve model for the charge radius anomaly

$$\mathcal{L}_{\text{int}} = -V_{\nu} \left[\kappa J_{\nu}^{\text{em}} - \bar{\psi}_{\mu} (g_V \gamma_{\nu} + g_A \gamma_{\nu} \gamma_5) \psi_{\mu} \right] = -V_{\nu} \left[e \kappa \bar{\psi}_p \gamma_{\nu} \psi_p - e \kappa \bar{\psi}_e \gamma_{\nu} \psi_e \right. \left. - \bar{\psi}_{\mu} ((e \kappa + g_V) \gamma_{\nu} + g_A \gamma_{\nu} \gamma_5) \psi_{\mu} + ... \right],$$

 New vector coupling to muons and no coupling to neutrinos will lead to breaking of SU(2)×U(1) and lead to a troublesome (Energy/m_V) behavior of amplitudes. For example, in the decay of W-bosons (which is normally *not* a precision measurement!) we have a huge enhancement of the three-body rate.

$$\begin{split} \Gamma \left(W \to \mu \nu V \right) &= \frac{g_V^2}{512\sqrt{2}\pi^3} \frac{G_F m_W^5}{m_V^2} \\ &= 1.74 \text{ GeV} \left(\frac{g_V}{10^{-2}} \right)^2 \left(\frac{10 \text{ MeV}}{m_V} \right)^2 \end{split}$$

 At even higher energies one will end up with strong coupling behavior, non-unitarity etc.

Non-conserved currents will be sensitive to high-mass scales through loops

 Another well know example are enhancement of non-conserved currents inside loops leading to FCNC. The key – access to momenta ~ m_w and m_t.

• For a fully conserved current, like couplings of dark photon, Amplitude $\sim G_F m_{meson}^2$

For a non-conserved current,

Amplitude ~ $G_F m_{top}^2$

Application to an axial-vector coupling leads to

 $\frac{g_{\rm axial}}{10^{-6}} \times \left(\frac{17 \text{ MeV}}{m_X}\right) < 0.1 - 1$

Gauge symmetry broken by anomalies

- Consider $L = g_X X_\mu \Sigma (\overline{q} \gamma_\mu q)$ which is the coupling of a vector particle "X" to a baryon current. If we stay at the tree level, then the current is exactly conserved, and nothing would be wrong with such a U(1)_{baryon}.
- However [and famously], this symmetry is broken by the triangle chiral anomaly (Adler++):

$$\partial^{\mu} J^{\text{baryon}}_{\mu} = \frac{\mathcal{A}}{16\pi^2} \left(g^2 W^a_{\mu\nu} (\tilde{W}^a)^{\mu\nu} - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right)$$

• The vector X cannot stay massless, and a strong interaction will develop at scales $\leq \frac{4\pi m_X}{g_X} / \left(\frac{3g^2}{16\pi^2}\right)$ (Preskill) unless such theory is UV completed, and anomaly is cancelled in full theory

Cancellation of anomalies for a baryonic U(1)

Anomaly of the baryon current can be cancelled by a new sector that is *heavier* than the SM. There are two main ways of doing it (and possibilities in between)

Option 1

Anomaly is cancelled by a non-chiral sector charged under SM gauge group. "Vector-like fermions"

 $m_{anomalon}$ stays finite as SM vev $\rightarrow 0$

Chiral under $U(1)_X$, get their masses due to v_X . This is a preferred option so far.

Option 2

Anomaly is cancelled by new fermions that are SM-like. Their mass is due to SM vev.

Big implications to EW precision, huge modifications to Higgs physics. Are these models still alive?¹⁹

Wess-Zumino term and low-energy EFT

Combining the anomalous contributions and WZ term, we get full longitudinal *X* amplitude for such theory. Its form is independent on exact composition of the sector that cancels anomaly – only on the fact that anomaly-cancelling sector preserves SM gauge invariance.

$$-(p+q)_{\mu}\mathcal{M}^{\mu\nu\rho} = \frac{\mathcal{A}_{BBX}}{4\pi^{2}}g_{X}g'^{2}\epsilon^{\nu\rho\lambda\sigma}p_{\lambda}q_{\sigma},$$

$$p_{\nu}\mathcal{M}^{\mu\nu\rho} = q_{\rho}\mathcal{M}^{\mu\nu\rho} = 0 \qquad (5)$$

$$\mathcal{M}^{\mu\nu\rho} \equiv \sum_{f} X_{\mu} \checkmark \qquad f_{f} \qquad f_{h} \qquad f_{h} \qquad g_{\mu} \qquad g_{\mu$$

One can confirm this by repeating the calculation with UV complete theory, where the result ($M^{\mu\nu\rho}$) emerges from the dependence of triangular diagrams on masses of anomaly-cancelling fermions.

Non-decoupling of the longitudinal mode

■ In equivalent language, one can use a Stuckelberg substitution, $X_{\mu} \rightarrow \partial_{\mu} \varphi \times (g_X/m_X).$

Previously obtained results are equivalent to the pseudoscalar coupled to SM gauge bosons in the following way:

There is no coupling to $\gamma\gamma$, but there are couplings to WW and $Z\gamma$, which will result in serious phenomenological consequences

$Z \rightarrow \gamma X$ decay

At one loop, Z boson will decay to γ X final state, and the emission of longitudinal scalar is m_Z²/m_X² enhanced. (A=3/2 for the baryonic X).

$$\Gamma_{Z \to \gamma X} \simeq \frac{\mathcal{A}^2}{384\pi^5} g_X^2 g^2 g'^2 \frac{m_Z^3}{m_X^2}$$

This corresponds to

$$\frac{\Gamma_{Z \to \gamma X}}{\Gamma_Z} \simeq 10^{-7} \mathcal{A}^2 \left(\frac{\text{TeV}}{m_X/g_X}\right)^2$$

- One can use previous LEP measurements for Z→ gamma + invisible, as well as Tevatron Z→ gamma + pi0.
- LHC will have huge sensitivity through studies of $l^{-}l^{+}\gamma$ final states.

FCNC amplitudes at two loop

 Anomalous [two-loop] contributions to FCNC amplitudes are important

$$\mathcal{L} \supset g_{Xd_id_j}X_\mu \bar{d}_j \gamma^\mu \mathcal{P}_L d_i + \text{h.c.} + \dots$$

$$g_{Xd_id_j} = -\frac{3g^4\mathcal{A}}{(16\pi^2)^2} g_X \sum_{\alpha \in \{u,c,t\}} V_{\alpha i} V_{\alpha j}^* F\left(\frac{m_\alpha^2}{m_W^2}\right)$$
$$\simeq -\frac{3g^4\mathcal{A}}{(16\pi^2)^2} g_X V_{ti} V_{tj}^* F\left(\frac{m_t^2}{m_W^2}\right) + \dots,$$

where

$$F(x) \equiv \frac{x(1+x(\log x - 1))}{(1-x)^2} \simeq x \quad (\text{for } x \ll 1)$$

• As anticipated, m²_{top} enhancement is there.

Comparison of one- and two-loop effects

- I remind that 1-loop level the current is conserved, and so only derivative type operators, $(b-s \text{ current})_{\mu} \partial_{\mu} X_{\mu\nu}$ etc, are induced (in the context of dark photon and 1-loop baryonic vector they were calculated in MP 2008, Batell et al 2014). There is no enhancement (only a suppression) of longitudinal *X* amplitude at one loop.
- For the $B \rightarrow KX$ decay, for example,

$$\mathcal{M}^{2-\mathrm{loop}}/\mathcal{M}^{1-\mathrm{loop}} \propto g^2/(16\pi^2) \times (m_t/m_X)^2$$

This is >> 1. Neglecting one loop altogether, we calculate B and K decays to πX , KX, K^{*}X etc final states.

Exact signatures depend on what m_X is. Low mass X decays through radiatively induced kinetic mixing. It also decays to $\pi^0 \gamma$ and 3π final states.

Resulting constraints on gauged baryon number

• No additional $X \rightarrow$ invisible channels.

 Constraints can be improved via additional studies at LHC, Bfactories, and new experiments like SHiP.

Resulting constraints on gauged baryon number

• With additional $X \rightarrow$ invisible channels.

• The baryonic force in this case is limited to be below weak interaction strength, $(g_X^2/m_X^2) < G_F$.

Future searches, LHC

- To be provocative, I'd say that the LHC may quickly become "intensity frontier machine", as energy will remain the same, while dataset will be increased by at least ×10, and may be almost 100.
- Billions of weak gauge bosons will be observed. Time to do the rare decays of the Z.

 ^{4.7 fb⁻¹(7 TeV)}
 ^{4.7 fb⁻¹(7 TeV)}
 ^{game} CMS
- 7 TeV CMS analysis of
 Z → mu mu gamma

Channels such as lepton pairs + gamma, jets + gamma, exclusive hadronic states (e.g. 3π + gamma) will have impact on Z→ γ X final state constraints.

Sensitivity to a light Higgs-mixed scalar

Example: new particle admixed with a Higgs.

$$\mathcal{L}_{\text{Higgs portal}} = \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - A S H^{\dagger} H$$

After (Higgs Field = vev + fluctuation h), the actual Higgs boson mixes with S. Missing engly Av

Mixing angle:
$$\theta = \frac{Av}{m_h^2}$$

The model is technically natural as long as A not much larger than m_S Low energy: new particle with Higgs couplings multiplied by θ *New effects in Kaon and B-decays.* Constraint: (mixing angle)² < 2×10^{-7} , in the technically natural range of mixings. Above the dimuon threshold the best constraints come from bump hunt, B \rightarrow K^(*)µµ performed by the LHCb. 28

Constraints on a light Higgs-mixed scalar

Compilation of constraints from G. Krnjaic 2015.

• NA62 and SHiP will improve sensitivity

 $\kappa_{\rm eff} \equiv m_e \xi_{\ell\ell} / ev$

Scalar that interacts mostly with leptons. One can still "fix" the g-2 discrepancy with such scalar.

Conclusions

- Light New Physics (not-so-large masses, tiny couplings) is a generic possibility. Some models (dark photon, scalar coupled Higgs portal) are quite natural, and *helpful* in explaining a number of puzzles in particle physics and astrophysics.
- Many searches have resulted in tight constraints on new vector particles, in particular ruling out dark photons as a "fix" for the g-2 discrepancy.
- Strong constraints on vectors that couple to anomalous currents follow from the Z decay and FCNC with K and B mesons, due to (weak scale / m_X)² enhancement.
- Dark scalars mixed through SM Higgs are best constrained by B and K decay studies. "Leptonic" scalar better be studied using $\tau_{.31}$