

Hidden sector searches at NA62

Marco Mirra

Università degli studi di Napoli Federico II and Sezione INFN Napoli

on behalf of NA62 collaboration

Light dark matter @ accelerators 2017

25 May 2017, La Biodola - Isola d'Elba, Italia

Outline

≻ NA62 experiment

- > Hidden sector searches in NA62
- > Expected sensitivities for the hidden sector
- > Preliminary studies on 2016 data in beam mode
- > Conclusions

2

NA62 experiment

Kaon physics at CERN:

- ✓ Fixed target experiments at CERN SPS
- ✓ Kaon decay-in-flight

Currently in NA62: ~200 participants 29 institutions from 13 countries

Main goal:

BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement with $\mathcal{O}(10\%)$ precision

SM prediction:

[Buras et al. JHEP 1511(2015)33]

BR $(K^+ \to \pi^+ \nu \overline{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$

Experimental status (E787, E949): BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) = $(17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [*Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)*]

25/05/2017 M. Mirra

Background Process	Branching ratio
$K^+ \to \pi^+ \pi^0$	0.2066
$K^+ \to \mu^+ \nu_\mu$	0.6356
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.0558

4

SPS protons: 400 GeV/c 10¹² Proton on target(PoT)/sec on spill 3.5 sec spill

5

SPS protons: 400 GeV/c 10¹² PoT/sec on spill 3.5 sec spill Secondary beam: 75 GeV/c, 1% bite 100 μrad 60 × 30 mm² *K*⁺(6%)/π⁺(70%)/p(24%) 750 MHz at GTK3

SPS protons: 400 GeV/c 10¹² PoT/sec on spill 3.5 sec spill

Secondary beam: 75 GeV/c, 1% bite 100 μrad 60 × 30 mm² *K*⁺(6%)/π⁺(70%)/p(24%) 750 MHz at GTK3 Kaon decay region: 60 m ~5 MHz O(10⁻⁶) mbar

7

Performances

- ✓ Excellent time resolution O(100 ps) to match beam and daughter particle information
- ✓ **Kinematics:** rejection of main *K* modes 10⁴ via kinematics reconstruction
- ✓ PID capability: μ vs π rejection of O(10⁷) for 15 < p(π^+) < 35 GeV
- ✓ High-efficiency veto: 10^8 rejection of π^0 for $E(\pi^0) > 40$ GeV

NA62 timescale for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (2016-2018)

Run in 2014: pilot run

Run in 2015: commissioning run

- commissioning of L0 trigger
- run up to nominal intensity,
- 33×10^{11} PoT/spill, 3.5 s effective-length spill

Run in 2016: detector commissioning + physics run

- L1 trigger/detecotor final commissioning
- stable run at 40% of the nominal beam intensity
- the goal is to reach SM-expectation sensitivity $O(10^{-10})$

Run in 2017: physics run

• improve on present state of the art (BNL measurement) collecting 14-15 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ events

Run in 2018: physics run

• measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at 10%

Current run

25/05/2017 M. Mirra

Hidden sector searches at NA62 9

Outline

> NA62 experiment

> Hidden sector searches in NA62

- **Expected sensitivities for the hidden sector**
- > Preliminary studies on 2016 data in beam mode
- > Conclusions

Hidden sector motivations

If DM is a thermal relic from hot early universe, can hunt for it in particle-physics: **search for non-gravitational interactions DM-SM**

A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions; many possible dynamics: vector (A' dark photon), neutrino (HNL), axial (ALP a), scalar.. Various experimental hints for hidden sector at MeV-GeV, e.g., a_{μ} 3.5- σ discrepancy:

Feeble interaction: ultra-suppressed production rate, **very long-lived states.** E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$ - 10^{-2} s, decay length ~ 10-10000 Km at SPS energies, suppression at production 10^{-7} - 10^{-10}

Hidden sector particle at NA62 from kaons

Such high-intensity, high-performance setup as NA62 might be suited for these NP searches:

Trigger bandwidth for final states other than " π^+ + E_{miss} " (used for the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$) limited. Some LFV/LNV studies can be performed because involve low-bandwidth trigger

• 3 daughter tracks at SES ~ 10⁻¹¹: $K^+ \to \pi^+ \mu^\pm e^\mp$, $K^+ \to \pi^- \mu^+ e^+$, $K^+ \to \pi^- e^+ e^+$, $K^+ \to \pi^\pm \mu^\mp \mu^+$

others because can be made in parasitic mode with the main trigger:

- search for heavy neutral leptons in $K^+ \to \mu^+ \nu_h, K^+ \to e^+ \nu_h$
- search for $\pi^0 \rightarrow invisible$, NA62 sensitive at 10⁻⁸ or better

The NA62 Be-target is followed 20-m downstream by two 1.6-m long, water-cooled, copper collimators, `Target Attenuator eXperimental areas' (TAXes) offering a choice of bores of different apertures for momentum selection.

25/05/2017 M. Mirra

In dump mode the target can be moved away from the beam and the beam let impinging on the copper. **The TAXes can act as a dump.**

Heavy Neutral Leptons, Dark Photons, Dark scalars, and ALPS can be originated by charm, beauty and photons produced in the interaction of protons with the dump.

PS: already in beam mode ~40% of protons do not interact with the target and are dumped onto the TAXes.

NA62 timescale for exotic searches

Run 2 (2016-2018): present setup for K^+ **beam + dedicated triggers. LFV/LNV sensitivity studies based.**

- $K^+ \rightarrow \pi^+ \mu^\pm e^\mp, K^+ \rightarrow \pi^- \mu^+ e^+, K^+ \rightarrow \pi^- e^+ e^+, K^+ \rightarrow \pi^- \mu^+ \mu^+$ (+ radiative modes)
- $\pi^0 \rightarrow \mu e, 3\gamma, 4\gamma, ee, eeee$, invisible

NA62 timescale for exotic searches

Run 2 (2016-2018): present setup for K^+ beam + dedicated triggers. LFV/LNV sensitivity studies based.

- $K^+ \rightarrow \pi^+ \mu^\pm e^\mp, K^+ \rightarrow \pi^- \mu^+ e^+, K^+ \rightarrow \pi^- e^+ e^+, K^+ \rightarrow \pi^- \mu^+ \mu^+$ (+ radiative modes)
- $\pi^0 \rightarrow \mu e, 3\gamma, 4\gamma, ee, eeee$, invisible

Run 3 (2021-2023): new program of NP searches for MeV-GeV mass hidden-sector candidates: dark photons, heavy neutral leptons, Axions/ALP's, etc. Goal: integrate (1-2) x10¹⁸ pot in dump mode in Run 3: this corresponds overall to 100-200 integrated days of data taking at 100% proton intensity. The beam time dedicated to the dump mode will be spread along the years to not disrupt the kaon programme

25/05/2017 M. Mirra

K, B, Bs, D, Ds → lepton HNL K, B, Bs, D, Ds → semi-leptonic modes

At SPS energies:

$$\sigma$$
 (pp \rightarrow s sbar X) ~ 0.15
 σ (pp \rightarrow c cbar X) ~ 2 10⁻³
 σ (pp \rightarrow b bbar X) ~ 1.6 10⁻⁷

Heavy neutrino couplings enter both in production and in decay (~ U^2 process)

Dark photons

At SPS energies: σ (pp \rightarrow s sbar X) ~ 0.15 σ (pp \rightarrow c cbar X) ~ 2 10⁻³ σ (pp \rightarrow b bbar X) ~ 1.6 10⁻⁷ Photon produced in light meson resonances, bremsstrahlung, and QCD processes. Search for massive particle mixing with the photon and decaying to visible final states ($e^+ e^-$, $\mu^+\mu^-$, etc.)

Dump mode

A dump with suitable length stops all beam-induced backgrounds but neutrinos and muons:

An experiment with a long decay volume will allow you to probe low values of couplings (as the lifetime of dark objects ~ 1/coupling²)

25/05/2017 M. Mirra

Outline

- ▷ NA62 experiment
- > Hidden sector searches in NA62
- > Expected sensitivities for the hidden sector
- Preliminary studies on 2016 data in beam mode
- > Conclusions

Search for visible decays of long-lived A'

Assume 2×10^{18} 400-GeV PoT:

- search for displaced, dilepton decays of dark photons, $A' \rightarrow \mu\mu$, ee
- include trigger/acceptance/selection efficiency
- assume zero-background, evaluate expected 90%-CL exclusion plot

Search for visible decays of HNL

Assume 2×10^{18} 400-GeV PoT:

- search for displaced, leptonic decays HNL $\rightarrow \pi e, \pi \mu$
- include trigger/acceptance/selection efficiency
- assume zero-background, evaluate expected 90%-CL exclusion plot

Search for visible decays of ALP

Assume 1.3×10^{16} (3.9 × 10¹⁷) PoT corresponding to 1 day (1 month) runs:

- study ALP Primakoff production [JHEP 1602 (2016) 018] at target
- search for ALP-decay to $\gamma\gamma$ in NA62 fiducial volume, account for geometrical acceptance
- assume zero-background, evaluate expected 90%-CL exclusion plot

Outline

- > NA62 experiment
- > Hidden sector searches in NA62
- **Expected sensitivities for the hidden sector**
- > Preliminary studies on 2016 data in beam mode
- > Conclusions

Search for $A' \rightarrow \mu\mu$: test on 2016 data

- Statistics corresponds to ~10¹⁵ PoT
- **Track quality + acceptance cuts:** forward detectors, CHOD, LKr, MUV3 associated to CHOD, LKr hits in time

Search for $A' \rightarrow \mu\mu$: test on 2016 data

Statistics corresponds to ~10¹⁵ PoT

Track quality + acceptance cuts: forward detectors, CHOD, LKr, MUV3 associated to CHOD, LKr hits in time

Vertex quality: two-track distance < 1 cm

Vertex position: 105 < Z < 165 m

Test if total momentum stems from target

Further event-level veto conditions: Additional energy in the LKr < 2 GeV Veto on forward / large angle calorimeters Veto on charged anti counter

No events selected in the signal region (even with standard K^+ beam)

NA62 2016 data: dark photon from π^0 decay

Decay chain: $K^+ \to \pi^+ \pi^0$, $\pi^0 \to A' \gamma$, $A' \to invisible$

> Signature:

• 1 photon + missing energy

Selection:

- π^+ as in $K^+ \to \pi^+ \nu \bar{\nu}$
- $15 < p_{\pi^+} < 35 \text{ GeV/c}$
- 1γ in LKr
- Missing momentum in LKr
- Extra γ veto

> Background:

• Negative tail of M_{miss}^2

> Normalization:

• $K^+ \to \pi^+ \pi^0$ from minimum bias

25/05/2017 M. Mirra

NA62 2016 data: dark photon from π^0 decay

NA62 limits in an interesting region; #K decays ~ 1.5×10^{10} (4% 2016 statistics) used

25/05/2017 M. Mirra

Hidden sector searches at NA62

Outline

- ▷ NA62 experiment
- > Hidden sector searches in NA62
- > Expected sensitivities for the hidden sector
- Preliminary studies on 2016 data in beam mode
- > Conclusions

Conclusions

- ✓ NA62 is officially approved to run until LS2 with the main goal of measuring the BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) with 10% accuracy;
- ✓ Before LS2 (2018) many searches in the hidden sector will be performed using the kaon beam (new limits on dark photon already investigated).

- ✓ After LS2 (2020++) there is a window of opportunity to run NA62 in beamdump mode to search for hidden particles from charm and beauty decays and pave the way for the next generation experiments (SHiP).
- Preliminary studies with data taken in beam and beam-dump modes show that the background can be kept under control, further improvements in the setup are currently under study.