

sub-GeV DM Searches at FNAL

R. T. Thornton

MiniBooNE-DM Collaboration

LDMA17 - Isola d'Elba

Fermi National Accelerator Laboratory

Fermilab Accelerator Complex

Booster Neutrino Beamline

- Beam: 8 GeV protons
- Target: Be
- Distance to MiniBooNE: 541 m
- Stable and "well-understood" beam

Beam Dump (Off-Target) Mode

- Can reduce vs by steering beam past target
- ► Target is air cooled ⇒ can run beam so target is not hit

► Charged mesons are absorbed in the steel beam dump before decaying ⇒ reduces the measured *ν* flux

MiniBooNE Detector

Neutral-Current Nucleon (NCE)

- 800 tons of mineral oil (CH₂)
- Cherenkov tracking detector with scintillator component
- 1280 inner and 240 veto PMTs.
- Ran for a decade in \(\nu\)\(\nu\) Modes and has obtained/published 27 papers
- The detector is well understood
- This analysis focuses on NCE interactions

Neutrino Interaction Channels

 ¹A. A. Aguilar-Arevalo et al., Phys. Rev. D81, 092005 (2010), arXiv:1002.2680 [hep-ex]

 ²A. A. Aguilar-Arevalo et al., Phys. Rev. D82, 092005 (2010), arXiv:1007.4730 [hep-ex]

 INDUMA LAUVERSITY
 R. T. Thornton
 LDMA17 - Isola d'Elba

Off-Target Run Stability

- Ran 9 months, Nov 2013 to begining of Sept. 2014, collected 1.86 × 10²⁰ POT
- CCQE ν "event"/POT decreased by ~50 compared to ν-Mode

Off-Target Neutrino Flux

• Event rate reduced by $\simeq 50$

► Flux rate reduced by ≃ 30

LDMA17 - Isola d'Elba

Vector Portal Kinetic Mixing Theory

Four Free Parameters

- $m_{\chi} \rightarrow$ mass of dark matter (χ)
- *m_V* → mass of dark vector mediator ("dark photon") (*V*)
- $\alpha_{\rm D} = g_{\rm D}^2/4\pi \rightarrow {\rm coupling\ constant}$ between *V* and χ

SM ~~~ DS

Annihilation Cross Section

$$\sigma \mathbf{V} \sim \alpha_{\scriptscriptstyle D} \epsilon^2 \alpha \times \frac{m_{\chi}^2}{m_{\scriptscriptstyle V}^4} \to \mathbf{Y} \equiv \epsilon^2 \alpha_{\scriptscriptstyle D} \left(\frac{m_{\chi}}{m_{\scriptscriptstyle V}}\right)^4 \Rightarrow \sigma \mathbf{V} \sim \frac{\gamma_{\alpha}}{m_{\chi}^2}$$

 $Y \equiv$ Dimensionless parameter controlling cross section

²C. Boehm and P. Fayet, Nucl.Phys. **B683**, 219 (2004), arXiv:hep-ph/0305261 [hep-ph], C. Boehm et al., Phys.Rev.Lett. **92**, 101301 (2004), arXiv:astro-ph/0309686 [astro-ph]

²B. Batell et al., Phys.Rev.Lett. **113**, 171802 (2014), arXiv:1406.2698 [hep-ph]

Light Dark Matter: Production and Detection

Production (
$$O(\epsilon^2 g_D)$$
)

Neutral-Meson Decay

Proton Bremsstrahlung

Detection ($O(\epsilon^2 g_D)$)

Elastic Bound Nucleon

Elastic Free Nucleon

N-DM event selection

Single p/n Track

- 1 track (single recoil) in beam timing window
- Event is centralized contained
 - No activity in the veto
 - Within tank fiducial volume
- Signal above visible energy and number of hits threshold
- PID: nucleon or electron

Based on the $\bar{\nu}$ -NCE cross section analysis ¹

¹A. A. Aguilar-Arevalo et al., Phys. Rev. D91, 012004 (2015), arXiv:1309.7257 [hep-ex]

INDIANA UNIVERSITY

Fit Strategy

Do a combined fit as a function of Q_{QE}^2 (reconstructed four momentum squared) to reduce systematic effects on NCE_{Off}

Include nuisance parameters to better fit NCE ν – Mode data

B. T. Thornton

INDIANA UNIVERSITY

Null Fit Results

- Data consistent with background only
- Systematics dominated
- Constraint samples reduce systematics to 13%
- Detailed simulation to predict DM interactions in detector (arXiv:1609.01770)
- DM1
 - *m_V* = 10 MeV
 - *m*_χ = 1 MeV

•
$$\epsilon^4 \alpha_D = 8.1 \times 10^{-14}$$

DM2

- ▶ *m_V* = 769 MeV
- $m_{\chi} = 381 \, \text{MeV}$

$$\bullet \ \epsilon^4 \alpha_D = 1.3 \times 10^{-14}$$

R. T. Thornton

90% Confidence Limits Results(arXiv:1702.02688)

INDIANA UNIVERSITY

R. T. Thornton

Confidence Limit Results (arXiv:1702.02688)

- Relic density line is where this model satisfies the thermal relic
- Dip in confidence limit is from increase production around m_p
- Exclude where this model solves muon g-2 discrepancy in most parameter space
- Exclude where this model matches relic density in some parameter space
- Exclude new parameter space regions
- Cover most of the gap between 1 MeV $< m_{\chi} <$ direct detection

R. T. Thornton LDMA17 - Isola d'Elba

Future: MiniBooNE N-DM Analysis: Model Independent Fit

- Results in efficiency corrected excess nuclear recoil events as a function of true nuclear recoil energy
- This will be in a data release with covariance matrix
 - Integrated = 130 ± 270 events/1e20 POT (last bin goes out to 2 GeV)
- Used by theorist to test other DM models

INDIANA UNIVERSITY

LDMA17 - Isola d'Elba

Future: MiniBooNE

- Future MiniBooNE analysis is promising
- Electron and π⁰ sensitivity plots provided by Patrick deNiverville

Future: Possible New Beam Configuration

Future: Possible New Beam Configuration

 Initial look shows neutrino event rate suppressed by ~20 compared to Off-Target running

Prediction at MiniBooNE for illustration

Future: Short Baseline Near Detector

• Predicted sensitivities for SBND electron and π^0 channels with 6 \times 10²⁰ POT and steel target

Plot from Patrick deNiverville

U INDIANA UNIVERSITY

R. T. Thornton

LDMA17 - Isola d'Elba

MiniBooNE-DM Collaboration

A.A. Aguilar-Arevalo ¹ M. Backfish ³ A. Bashyal ¹⁵ B. Batell ² B.C. Brown ³ R. Carr ⁴ A. Chatterjee ¹⁵ R. Cooper ^{5,12} P. deNiverville ⁶ R. Dharmapalan ⁷ Z. Djurcic ¹⁰ R. Ford ³ F.G. Garcia ³ G. T. Garvey ⁸ J. Grange ^{9,10} J.A. Green ⁸ W. Huelsnitz ⁸ I. L. de Icaza Astiz ¹ G. Karagiorgi ⁴ T. Katori ¹¹ T. Kobilarcik ³ W. Ketchum ⁸ Q. Liu ⁸ W.C. Louis ⁸ W. Marsh ³ C.D. Moore ³ G.B. Mills ⁸ J. Mirabal ⁸ P. Nienaber ¹³ Z. Pavlovic ⁸ D. Perevalov ³ H. Ray ⁹ B.P. Roe ¹⁴ M.H. Shaevitz ⁴ S. Shahsavarani ¹⁵ I. Stancu ⁷ R. Tayloe ⁵ C. Taylor ⁸ R.T. Thornton ⁵ R. Van de Water ⁸ W. Wester ³ D.H. White ⁸ J. Yu ¹⁵

 ¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, D.F. México ²University of Pittsburgh, Pittsburgh, PA 15260, USA
 ³Fermi National Accelerator Laboratory, Batavia, IL 60510
 ⁴Columbia University, New York, NY 10027
 ⁵Indiana University, Boomington, IN 47405
 ⁶University of Victoria, Victoria, BC, V8P 5C2
 ⁷University of Alabama, Tuscaloosa, AL 35487
 ⁸Los Alamos National Laboratory, Los Alamos, NM 87545
 ⁹University of Florida, Gainesville, FL 32611
 ¹⁰Argonne National Laboratory, Los Alamos, NM 87545
 ⁹University of Florida, Gainesville, FL 32611
 ¹⁰Argonne National Laboratory, Las Cruces, NM 88003
 ¹³Saint Mary's University of Iondon, London, E1 4NS, UK
 ¹²New Mexico State University, Ias Cruces, NM 55987
 ¹⁴University of Michigan, Ann Arbor, MI 48109
 ¹⁵University of Texas (Arlington), Arlington, TX 76019

Extra Slides

Understand Backgrounds

- Beam related backgrounds: decade of data used to reduce systematics
- Dirt events small because MiniBooNE is huge with veto region
- Beam unrelated backgrounds: Measured with 12 (2)Hz trigger for off-target (v - Mode)

Include Nuclear Physics in DM Prediction

- Stripping a nucleus of a proton involves complex nuclear physics: e.g. binding energy, Pauli blocking, etc.
- ▶ Honest sensitivity estimate must include a decent nuclear model ⇒ threshold effects

Include sideband/other channels

- Introduces correlations between the samples
- Results: Smaller systematic correlations on signal sample
- Results: Increases sensitivity

R. T. Thornton

LDMA17 - Isola d'Elba

Reducing Beam Unrelated Background

Limited Sample Off-Target-NCE (NCE_{Off})

- Initial look showed Beam unrelated bkg. = 69% of data
- Using previous trigger info. to reject events that had hit info. before the beam trigger
- Reduced Beam unrelated bkg. to 58% of data with BRB efficiency of 95%
- Off-target Beam unrelated bkg. measured with random trigger at ~10 Hz

Extension to sub-GeV Dark Matter

Add baryonic current¹

$$\mathcal{L} = \mathcal{L}_{\chi} - \frac{1}{4} F_{\mu\nu_{D}} F_{D}^{\mu\nu} + \frac{1}{2} m_{V}^{2} V_{\mu} V^{\mu} - \frac{\epsilon}{2} F_{\mu\nu} F_{D}^{\mu\nu} + q_{B} g_{D} V_{\mu} J_{B}^{\mu} + \cdots$$
$$J_{\mu}^{B} = \frac{1}{3} \sum_{i} \bar{q}_{i} \gamma_{\mu} q_{i} \text{ sum over all quark species}$$

- When ε = 0 g_D → g_B (α_B = g²_B/4π) L is solely dependent on baryonic current
- This scenario is called leptophobic
- MiniBooNE NCE analysis is sensitive to this model (proton production and proton/neutron detection)

¹B. Batell et al., Phys. Rev. D90, 115014 (2014), arXiv:1405.7049 [hep-ph], P. deNiverville et al., (2016), arXiv:1609.01770 [hep-ph]

Model Independent Fit

- Added fit parameters, one for each T^{true} bin
- Efficiency corrected predicted # events in true nuclear recoil energy
- Integrated = 130 ± 270 events/1e20 POT
- This will be in a data release with covariance matrix

UINDIANA UNIVERSITY

Leptophobic Model

- Used Model Independent Fit to produce 90% CL¹
- LSND, E137, etc. do not constrain due to lepton final state interaction
- MiniBooNE covers a lot of new parameter space

¹Thanks to P. deNiverville for doing the analysis

INDIANA UNIVERSITY

R. T. Thornton

LDMA17 - Isola d'Elba

Detector and Cut Effects on DM Pred.

Reco

- Detector and Cut efficiencies reduces the number of low energy DM scatters
- ► MiniBooNE sensitive to $\langle T_N^{true} \rangle = O(100 \text{ MeV})$ after efficiencies applied
- Expect to see higher sensitivity around m_{ρ} than below m_{π^0}

INDIANA UNIVERSITY

R. T. Thornton L

LDMA17 - Isola d'Elba

Signal Best Fit

- Little change in test statistic when changing V, χ
- Huge change in $\epsilon^4 \alpha_D$

Next Analyses in this Data Set

RF spill-event timing

- Massive DM will be delayed relative to v backgrounds
- Predictable timing spectrum vs. dirt which is flat in time
- Timing is even applicable to ν-oscillation data to separate e-γ

DM-Electron Scattering

- ν -e scattering as background
- Expect better sensitivity than NDM

Limited NCE_{Off} RF Timing Spectrum

$\chi N \rightarrow \Delta + X$, $\Delta \rightarrow \pi^0$

- ► NCπ⁰ background
- π^0 is a clean detection signal
- BUB small and expect better sensitivity than NDM

Future sub-GeV DM Searches

What would more data do?

- NDM is systematics limited more data will further optimization of analysis
- $\pi^0 DM$ and eDM are currently statistics limited and more data is crucial

Recent BNB Upgrade: Dual beam on-/off-target running

- Fast trim magnet to switch proton trajectory is installed
- BNB horn operates at 5 Hz but 7 Hz can be delivered to BNB when NuMI is down for maintenance or repair
- Gates around MI are installed; more opportunities for BNB beam

Short Baseline Neutrino Program

- Entire program can search for low-mass DM
- Short Baseline Near Detector DM signal is $\sim 20 \times$ the MiniBooNE rate

References I

- [1] A. A. Aguilar-Arevalo et al., Phys. Rev. D81, 092005 (2010), arXiv:1002.2680 [hep-ex].
- [2] A. A. Aguilar-Arevalo et al., Phys. Rev. D82, 092005 (2010), arXiv:1007.4730 [hep-ex].
- [3] C. Boehm and P. Fayet, Nucl.Phys. B683, 219 (2004), arXiv:hep-ph/0305261 [hep-ph].
- [4] C. Boehm, D. Hooper, J. Silk, M. Casse, and J. Paul, Phys.Rev.Lett. 92, 101301 (2004), arXiv:astro-ph/0309686 [astro-ph].
- [5] B. Batell, R. Essig, and Z. Surujon, Phys.Rev.Lett. 113, 171802 (2014), arXiv:1406.2698 [hep-ph].
- [6] A. A. Aguilar-Arevalo et al., Phys. Rev. D91, 012004 (2015), arXiv:1309.7257 [hep-ex].
- [7] B. Batell, P. deNiverville, D. McKeen, M. Pospelov, and A. Ritz, Phys. Rev. D90, 115014 (2014), arXiv:1405.7049 [hep-ph].
- [8] P. deNiverville, C.-Y. Chen, M. Pospelov, and A. Ritz, (2016), arXiv:1609.01770 [hep-ph].