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Lots of efforts – no new physics 
thus far 

The problem of dark matter remains not solved. 



Feeling tired? 
(After so many campaigns, just before being sent off to Elba)

Plan

1. Classification of light dark matter

2. Viable models of light WIMPs

3. Methods to find them



DM classification
At some early cosmological epoch of hot Universe, with temperature      
T >> DM mass, the abundance of these particles relative to a species of 
SM (e.g. photons) was

Normal: Sizable interaction rates ensure thermal equilibrium,        NDM/Ng =1. 
Stability of particles on the scale tUniverse is required. Freeze-out calculation gives the 
required annihilation cross section for DM --> SM of order ~ 1 pbn, which points 
towards weak scale. These are WIMPs. Asymmetric DM is also in this category.

Very small: Very tiny interaction rates (e.g. 10-10 couplings from WIMPs). Never in 
thermal equilibrium. Populated by thermal leakage of SM fields with sub-Hubble rate 
(freeze-in) or by decays of parent WIMPs. [Gravitinos, sterile neutrinos, and other 
“feeble” creatures – call them superweakly interacting MPs] 

Huge: Almost non-interacting light, m< eV, particles with huge occupation numbers 
of lowest momentum states, e.g.  NDM/Ng ~1010. “Super-cool DM”. Must be bosonic. 
Axions, or other very light scalar fields – call them super-cold DM. 



WIMP paradigm, some highlights

DM-SM mediators
SM statesDM states

Cosmological (also galactic) annihilation
Collider WIMP pair-production
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1. What is inside this green box? I.e. what forces mediate WIMP-SM 
interaction?

2. Do sizable annihilation cross section always imply sizable scattering 
rate and collider DM production? (What is the mass range?)
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                Two types of WIMPs 
  Un-secluded       Secluded 

Ultimately discoverable      Potentially well-hidden 
Size of mixing*coupling is set by                    Mixing angle can be 
annihilation. Cannot be too small.                   10-10 or so. It is not  

                  fixed by DM annihilation 
 
        You think gravitino DM is depressing, but so can be WIMPs 

       

MP, Ritz, Voloshin



Light DM – difficult to detect via nuclear recoil 
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Direct Detection

• Nuclear recoil too weak -  

• Can we find a relativistic source of Dark Matter?
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511 keV
motivated

Most money spent

• There is a large, potentially interesting part of WIMP DM parameter 
space that escapes constraints from DM-nuclear scattering, but is 
potentially within reach of other probes

• Viable models imply the dark sector, or accompanying particles 
facilitating the DM à SM annihilation. Can create additional 
signatures worth exploring. 
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Light WIMPs are facilitated by light mediators

(Boehm, Fayet; MP, Riz, Voloshin …)  Light dark matter is not ruled out 
if one adds a light mediator. 

WIMP paradigm:    

Electroweak mediators lead to the so-called Lee-Weinberg window, 

If instead the annihilation occurs via a force carrier with light mass, DM 
can be as light as ~ MeV (and not ruled out by the CMB if it is a scalar). 

• The minimal dark photon model, with no light particles charged under U(1)⇥ is excluded
(or close to be excluded) by experiments. The most di⌅cult part of the parameter
space, the vicinity of mA� ⇤ 30 MeV, has been finally ruled out as a solution to the
g � 2 puzzle only recently [18,20].

• A slightly extended model of dark photon, can still o⇥er a solution to the g � 2 dis-
crepancy. A⇥ ⌃ ⇥⇥̄ decay, for example, can dilute ”visible” A⇥ ⌃ e�e+ modes. In any
case, it appears that mA� < 200 MeV is required [48].

• Finally, the least constrained model is based on gauged Lµ�L⇥ vector portal [27,28,30],
and the vector mass belowmV ⇤ 400 MeV can still be considered as a potential solution
to the muon g � 2 discrepancy [49,50].

To summarize, the light vector particle remains an attractive solution to the muon g� 2
discrepancy, and more experimental work is required to exclude this possibility in as much
a model-independent way as possible.

3.3 Mediator of interaction with DM (both heavy and light)

Vector portals may have an interesting relation to dark matter. In the last few years, the
direct searches for dark matter have intensified, paralleled by the broad investation of the-
oretical opprtunities for dark matter. Weakly interacting dark matter (WIMP) paradigm
o⇥ers perhaps the largest number of opportunities for the experimental discovery of dark
matter via its non-gravitational interaction. In the standard WIMP paradigm, known from
1970s [51,52], the correct cosmological abundance of dark matter is achieved via its self an-
nihilation at high temperatures, T ⇤ m⇤, where m⇤ is the WIMP mass. Simple calculations
show that the required WIMP abundance is achieved if

�annih(v/c) ⇤ 1 pbn =� �DM ⌥ 0.25, (3.2)

where v/c is the approximate relative velocity at the time of annihilation. The nature of a
force responsible for the self-annihilation of WIMPs to the SM states is important. It sets
the size of the self-annihilation cross section, and ultimately the abundance of WIMP dark
matter. If the interactions are mediated by forces that have the weak strength, and operate
with the exchange of the weak scale particles, then for small and large masses one would
expect the following scaling with the WIMP mass,

�(v/c)  

�
⇤

⇥
G2

Fm
2
⇤ for m⇤ ⌅ mW ,

1/m2
⇤ for m⇤ ⇧ mW .

=� few GeV < m⇤ < few TeV (3.3)

This famously determines the so-called ”Lee-Weinberg window”, or the mass range for the
DM in the assumption of weak-scale mediators. According to this logic, MeV-GeV scale
dark matter is disfavored.
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Figure 3: Light (m� ⇥ few MeV) scalar dark matter annihilating to electron-positron pairs
due to mixed ⇥ � A� propagator. The annihilation occurs in the p-wave.

The crucial piece of assumption in the argument above is link between the weak scale
and the mass of the mediator particles. As was argued in previous sections, some vector
portal do allow interaction strengths much in excess of GF . This, in turn opens the door for
the construction of rather natural models of light dark matter, which can be made as light
as MeV [53]. It is important to realize that such WIMPs fall under the category of dark
matter that is extremly di⇥cult to discover via direct scattering of galactic DM particles on
atoms [54], and therefore alternative ways of covering this mass range have to be provided.

On the phenomenological side, the light dark matter can be behind an unexpectedly
strong emission of 511 keV photons from the galactic bulge, as observed by the SPI/INTEGRAL
[55]. It is presently unclear whether New Physics needs to be invoked for the explanation of
such emission, and we refer readers to the on-going debate in the literature [56]. Nonetheless,
the dark matter-related origin of 511 keV excess can be entertained, supplying the nonrela-
tivistic or semi-relativistic positrons from the DM annihilation or decay [57]. For example,
scalar dark matter charged under new U(1)� with masses in m� ⇥few MeV range can pass all
the existing constraints [53], and supply the requisit source for positrons. Direct calculations
in the model where mediation of the SM-DM interaction occurs due to the dark photon, Fig.
3, gives the annihilation cross-section in the form

⇧annih(v/c) ⌅
4⌅

3
�D�⇤

2v2
m2

�

(m2
A� � 4m2

�)
2
. (3.4)

Here �D = (g�)2/(4⌅), and m� ⇤ me is assumed. MP: I need to check the numerical
coe�cient. The extra factor of velocity square in this formula is indicative of the p-wave
annihilation, and is what ulmitately allows this model escaping strong constraints on light
dark matter annihilation imposed by the accurate measurements of CMB anisotropies. The
least constrained region of the parameter space corresponds to very light mediators, mA� <
100 MeV, and 2m� < mA� . With this choice of parameters, ⇧annih(v/c) can be significantly
larger than 1 pbn, making MeV-scale dark matter possible.

Another prominent subject where the DM-related explanation have attracted a lot of at-
tention is the observation of the increase with energy in the fraction of high-energy postrons in
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the nonrelativistic or semi-relativistic positrons from the DM annihilation or decay [59]. For
example, scalar dark matter charged under new U(1)0 with masses in m� ⇠few MeV range
can pass all the existing constraints [55], and supply the requisit source for positrons. Direct
calculations in the model where mediation of the SM-DM interaction occurs due to the dark
photon, Fig. 3, gives the annihilation cross-section in the form

�
annih

(v/c) ' 8⇡↵↵D✏2(m2

� + 2m2

e)v
2

3(m2

A0 � 4m2

�)
2

q
1�m2

e/m
2

�. (3.4)

Here ↵D = (g0)2/(4⇡), and m� � me is assumed. The extra factor of the relative velocity
square in this formula is indicative of the p-wave annihilation, and is what ulmitately allows
this model escaping strong constraints on light dark matter annihilation imposed by the
accurate measurements of CMB anisotropies. The least constrained region of the parameter
space corresponds to very light mediators, mA0 < 100 MeV, and 2m� < mA0 . With this
choice of parameters, �

annih

(v/c) can be significantly larger than 1 pbn, making MeV-scale
dark matter possible.

Another prominent subject where the DM-related explanation have attracted a lot of
attention is the observation of the increase with energy in the fraction of high-energy postrons
in the total astrophysical flux. In 2008, the results of PAMELA satellite showed [60,61] that
the fractions of galactic anti-proton flux, np̄/(np + np̄), as a function of energy, behaves
according to the fiducial expectations of the astrophycal modelling of cosmic ray origin and
propagation. In contrast, the corresponding fraction of positrons, nē/(ne + nē), exhibited
a significant upturn above E > 10 GeV, prompting speculations about the necessity of
additional primary sources of energetic positrons. This measurement was independently
confirmed through FERMI-LAT observations [62], and brought to the new level of accuracy
by the AMS-2 experiment [63]. The annihilation of heavy dark matter with m� > MW

could be a theoretically attractive source of such positrons. Yet, the simplest WIMP models
do not fit the positron excess because of the two problem. The required annihilation rate
capable of supplying the positron excess is above the WIMP freeze-out annihilation rate by
⇠ two orders of magnitude. In addition, models where the final state annihilation products
are heavy SM particles (b, t, W, Z, h) will necessarily produce antiprotons, and therefore
are tightly constrained by np̄/(np + np̄).

It was soon realized that these problems can be rather e�ciently circumvented if the
heavy WIMP dark matter is interacting with the SM via relatively light mediators [64, 65],
and the DM!SM annihilation occurs via an intermediate stage of light mediators, Fig. 4.
In particular, for the light vector mediator one finds that

• The WIMP dark matter abundance is regulated via ��̄ ! V V ! SM particles annihi-
lation process. If mV is su�ciently light, then the v ⇠ 0.3c and v ⇠ 10�3c annihilation
regimes (freeze-out vs galactic environment) can be markedly di↵erent. The existence
of dark-force-induced attraction between WIMP and anti-WIMP particles creates a
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Light WIMP would have to 
interact stronger than neutrino
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Let us classify possible connections between Dark sector and SM
H+H (l S2 + A S) Higgs-singlet scalar interactions (scalar portal)
BµnVµn “Kinetic mixing” with additional U(1)’ group
(becomes a specific example of Jµ

i Aµ extension)
LH N neutrino Yukawa coupling, N – RH neutrino  
Jµ

i Aµ requires gauge invariance and anomaly cancellation
It is very likely that the observed neutrino masses indicate that 

Nature may have used the LHN portal… 
Dim>4
Jµ

A  ¶µ a /f      axionic portal
……….

Neutral “portals” to the SM



UV complete models for light DM
two examples of viable models

§ Scalar dark matter talking to the SM via a dark photon 
(variants: Lmu-Ltau etc gauge bosons). With 2mDM < mmediator.

§ Fermionic dark matter talking to the SM via a “dark scalar” 
that mixes with the Higgs. With mDM > mmediator.

After EW symmetry breaking S mixes with physical h, and can be 
light and weakly coupled provided that coupling A is small. 
§ Notice how simple/economical these models are!
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Two different types of annihilation
§ Model 1: one step process:

Main signature: mediator [dark photon] can be produced in 
collisions and it decays to DM 

§ Model 2: two-step process: annihilation to mediators with 
subsequent decay 

Main signature: Production of scalar mediator in meson decays 
(e.g. K or B mesons) with missing energy signal [if long lived], or 
displaced decays. 11
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Cosmology constraints
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In both cases, the annihilation proceed in p-wave, and is very 
suppressed at the recombination time à no CMB constraints.

Thus, (few MeV – to – GeV) range is not excluded by cosmology.

Mass is limited to be > few MeV from the consistency of Big Bang 
Nucleosynthesis. 



Anomalies? A simple concept of dark matter + 
mediator allows [speculatively] connecting DM to 

some on-going puzzles

1. Unexpectedly strong and uniform 511 keV emission from galactic 
bulge could be fit by annihilation of a few MeV galactic WIMPs. 

2. If DM is heavy and mediator is light, one can fit its annihilation to 
the famous positron-to-electron ratio rise (thanks to Sommerfeld
enhancement at low velocity, bound states effects, as well as lepto-
phylic composition of the final states)

3. Inner density profiles of galaxies can smoothed out by the self-
scattering WIMPs with 10-24cm2/GeV. For EW scale WIMPs, light 
mediators can easily provide such cross section. 

4. ….

These connections are all rather interesting but not necessarily 
compelling. We’d like a laboratory probe (Exclusion or confirmation).



How to look for light WIMP DM ? 

1. Detect missing energy associated with DM produced in collisions of 
ordinary particles

2. Produce light dark matter in a beam dump experiment, and detect its 
subsequent scattering in a large [neutrino] detector

3. Detect scattering of light ambient DM on electrons, and keep 
lowering the thresholds in energy deposition.

All three strategies are being actively worked on, and pursued by several 
ongoing and planned experiments. 
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BaBar and NA64 collaborations has published new results this year.   
Search of e+e- à g + V à g + cc

§ Covers all of the dark photon parameter space, decaying invisibly, 
consistent with alleviating the muon g-2 discrepancy

Missing energy/momentum searches
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the frequentist profile-likelihood limits [29]. Figure 5
compares our results to other limits on " in channels
where A0 is allowed to decay invisibly, as well as to the
region of parameter space consistent with the (g � 2)µ
anomaly [5]. At each value of mA0 we compute a limit
on " as a square root of the Bayesian limit on "2 from
Fig. 4. Our data rules out the dark-photon coupling as
the explanation for the (g�2)µ anomaly. Our limits place
stringent constraints on dark-sector models over a broad
range of parameter space, and represent a significant im-
provement over previously available results.

We are grateful for the excellent luminosity and ma-
chine conditions provided by our PEP-II colleagues, and
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p + p(n) �⇥ V � �⇥ �̄�

Fixed target probes - Neutrino Beams

30

⇤0, ⇥ �⇥ V � �⇥ ⌅̄⌅�
� + N � � + N

proton 
beam

(near) 
detector

� + e� � + e

We can use the neutrino (near) detector as a dark matter 
detector, looking for recoil, but now from a relativistic 
beam. E.g.

MINOS
120 GeV protons

1021 POT
1km to (~27ton) 

segmented detector

MiniBooNE
8.9 GeV protons

1021 POT
540m to (~650ton) 
mineral oil detector

T2K
30 GeV protons

(! ~5x1021 POT)
280m to on- and off-

axis detectors

Proposed in Batell, MP, Ritz, 2009. Strongest constraints on MeV DM
(followed up in Krnjaic et al 2013, e-beam idea)
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Light DM - trying to see production + scattering

Same force that is responsible for depletion of χ to acceptable levels in 
the early Universe will be responsible for it production at the collision 
point and subsequent scattering in the detector.

Signal scales as (mixing angle)4. 

DM Production & Scattering
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MiniBooNE search for light DM
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MiniBoone has completed a long run in the beam dump mode, as 
suggested in

By-passing Be target is crucial for reducing the neutrino background 
(Richard van de Water et al. …) . Currently, suppression of n flux ~50. 

MiniBooNE
90% C.L.

MiniBooNE sensitivity to vector portal DM

23
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The MiniBooNE-DM collaboration searched for vector-boson mediated production of dark matter
using the Fermilab 8 GeV Booster proton beam in a dedicated run with 1.86⇥1020 protons delivered
to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter
via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for
previous MiniBooNE scattering results were employed, and several constraining data sets were
simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No
excess of events over background was observed, leading to an 90% confidence limit on the dark-
matter cross section parameter, Y = ✏2↵0(m�/mv)

4 . 10�8, for ↵0 = 0.5 and for dark-matter
masses of 0.01 < m� < 0.3 GeV in a vector portal model of dark matter. This is the best limit from
a dedicated proton beam dump search in this mass and coupling range and extends below the mass
range of direct dark matter searches. These results demonstrate a novel and powerful approach to
dark matter searches with beam dump experiments.

PACS numbers: 95.35.+d,13.15.+g

Introduction — There is strong evidence for dark mat-
ter (DM) from observations of gravitational phenomena
across a wide range of distance scales [1]. A substantial
program of experiments has evolved over the last sev-
eral decades to search for non-gravitational interactions
of DM, with yet no undisputed evidence in this sector.
Most of these experiments target DM with weak scale
masses and are less sensitive to DM with masses below a
few GeV. To complement these approaches, new search
strategies sensitive to DM with smaller masses should be
considered [2].

Fixed-target experiments using beams of protons or
electrons can expand the sensitivity to sub-GeV DM that
couples to ordinary matter via a light mediator parti-
cle [3–18]. In these experiments, DM particles may be
produced in collisions with nuclei in the fixed target, of-
ten a beam dump, and may be identified through interac-
tions with nuclei in a downstream detector. Results from
past beam dump experiments have been reanalyzed to

Be

Target

Earth

Air

Decay Pipe

Steel

Beam Dump

MiniBooNE Detector

p
⇡0

V

�

�†

�
N

�
50m 4m 487m

FIG. 1. Schematic illustration of this DM search using the
the Fermilab BNB in o↵-target mode together with the Mini-
BooNE detector. The proton beam is steered above the beryl-
lium target in o↵-target mode lowering the neutrino flux.

place limits on the parameters within this class of models.
In this Letter, we report on the first dedicated search of
this type (proposed in [6]), which employs 8 GeV protons
from the Fermilab Booster Neutrino Beam (BNB), re-
configured to reduce neutrino-induced backgrounds, com-
bined with the downstream MiniBooNE (MB) neutrino
detector (Fig. 1).
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Future directions
To improve on sensitivity to light dark matter in beam dump/fixed target 
experiments:

• SHiP

• NA64-like with more intensity (LDMX)

• More experiments at short neutrino baseline program and DUNE near 
detector.

• Electron beam dump + scattering (BDX)

• Ultimate beam dump experiment looking for light DM in scattering = 
powerful accelerator next to large neutrino detectors deep 
underground for least background. 

• New important results in K and B decays (NA62, LHCb, BelleII)

!"#$%&'()%*+,'&*#-,.%/)0%1-2+.%/345% 8%

The SHiP experiment 
( as implemented in Geant4 ) 
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Pushing down the sensitivity to energy 
deposition in direct detection

• In the last few years there has been a push to extend the sensitivity 
of direct detection to very light dark matter, and go below the 1 keV
energy deposition scale

Large neutrino 
experiments Eth >200 
keV counting rates at 
~ 10-2/ton/day/MeV 
for E ~ few MeV

Large direct detection 
experiments

Eth >1keV counting 
rates ~ 10-2/kg/day/keV
for E ~ few keV

Ionization,         
Eth > few eV,
102/kg/day/keV

Active field of exploration, starting from

Essig, Mardon, Sorensen, Volansky …
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Superweakly interacting Vector Dark Matter

§ Vectors are long-lived if mV < 2 me. V has to decay to 3 photon 
via the light-by-light loop diagram: 

The g-background constraints are weak. (No monochromatic lines)
Can be viable DM model: MP, Ritz, Voloshin; Redondo, Postma
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“Super-WIMP” DM absorption signal

An, MP,Pradler, Ritz, PRD 2014,   Bloch et al (Tian-Tian Yu)

Large DM experiments can compete with stellar constraints and have 
sensitivity to mixing angles down to e ~10-15. (unfortunately, e = 0 is 
also ok)
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FIG. 1. A summary of constraints on the dark photon kinetic mixing parameter κ as a function of vector mass mV (see Secs. 2 and 3
for the details). The thick lines exclude the region above for dark photons with dark matter relic density. The solid (dashed) line is from
XENON10 (XENON100); the limit from XMASS is taken from [21]. The dash-dotted lines show our newly derived constraints on the
diffuse γ-ray flux from V → 3γ decays, assuming that decays contribute 100% (thick line) or 10% (thin line) to the observed flux. The
thick dotted line is the corresponding constraint from CMB energy injection. Shaded regions depict (previously considered) astrophysical
constraints that are independent of the dark photon relic density. The limits from anomalous energy loss in the sun (sun), horizontal
branch stars (HB), and red giant stars (RG) are labeled. The shaded region that is mostly inside the solar constraint is the XENON10
limit derived from the solar flux [27].

careful analysis of the ‘ionization-only’ signal available
to a variety of DM experiments. Many experiments have
already reported relevant analyses [14–21].
The rest of this work is organized as follows. In Sec. 2

we introduce the dark photon model in some more detail,
describe existing constraints, and reconsider indirect lim-
its. In Sec. 3 we compile the relevant formulæ for direct
detection, confront the model with existing direct detec-
tion results and derive constraints on the mixing angle
κ. The results are summarized in Fig. 1, which shows
the new direct detection limits in comparison to various
astrophysical constraints. In Sec. 4, we provide a gen-
eral discussion of super-weakly coupled DM, and possi-
ble improvements in sensitivity to (sub-)keV-scale DM
particles.

2. DARK PHOTON DARK MATTER

It has been well-known since 1980s that the SM allows
for a natural UV-complete extension by a new massive or
massless U(1)′ field, coupled to the SM hypercharge U(1)
via the kinetic mixing term [22]. Below the electroweak
scale, the effective kinetic mixing of strength κ between
the dark photon (V ) and photon (A) with respective field

strengths Vµν and Fµν is the most relevant,

L = −
1

4
F 2
µν −

1

4
V 2
µν −

κ

2
FµνV

µν +
m2

V

2
VµV

µ + eJµ
emAµ,

(1)

where Jµ
em is the electromagnetic current and mV is the

dark photon mass. This model has been under signif-
icant scrutiny over the last few years, as the minimal
realization of one the few UV-complete extensions of the
SM (portals) that allows for the existence of light weakly
coupled particles [23]. For simplicity, we will consider
the Stückelberg version of this vector portal, in which
mV can be added by hand, rather than being induced
via the Higgs mechanism.

2.1. Cosmological abundance

Light vector particles with mV < 2me have multi-
ple contributions to their cosmological abundance, such
as (a) production through scattering or annihilation,
γe± → V e± and e+e− → V γ, possibly with sub-Hubble
rates, (b) resonant photon-dark photon conversion, or
(c) production from an initial dark photon condensate,
as could be seeded by inflationary perturbations. Notice
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Neutrino oscillations: We know that new phenomenon exists, and if 
interpreted as neutrino masses and mixing, is it coming from deep 
UV, via e. .g Weinberg’s operator

or it is generated by new IR field, such as RH component of Dirac 
neutrinos?

Dark matter: 25% of Universe’s energy balance is in dark matter:  
we can set constraints on both. If it is embedded in particle 
physics, then e.g. neutralinos or axions imply new UV scales.

However, there are models of DM where NP lives completely in the 
IR, and no new scales are necessary. 

Both options deserve a close look. In particular, light and very weakly 
coupled states are often overlooked, but deserve attention.

New physics: UV or IR?(let’s say IR/UV boundary ~ EW scale)

Sensitivity to light weakly-coupled new physics at the precision frontier

Matthias Le Dall,1 Maxim Pospelov,1, 2 and Adam Ritz1

1Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada

(Dated: May 2015)

Precision measurements of rare particle physics phenomena (flavor oscillations and decays, electric
dipole moments, etc.) are often sensitive to the e⇥ects of new physics encoded in higher-dimensional
operators with Wilson coe⇧cients given by C/(�NP)

n, where C is dimensionless, n ⇥ 1, and �NP

is an energy scale. Many extensions of the Standard Model predict that �NP should be at the
electroweak scale or above, and the search for new short-distance physics is often stated as the
primary goal of experiments at the precision frontier. In rather general terms, we investigate the
alternative possibility: C ⌅ 1, and �NP ⌅ mW , to identify classes of precision measurements
sensitive to light new physics (hidden sectors) that do not require an ultraviolet completion with
additional states at or above the electroweak scale. We find that hadronic electric dipole moments,
lepton number and flavor violation, non-universality, as well as lepton g � 2 can be induced at
interesting levels by hidden sectors with light degrees of freedom. In contrast, many hadronic flavor-
and baryon number-violating observables, and precision probes of charged currents, typically require
new physics with �NP >⇤ mW . Among the leptonic observables, we find that a non-zero electron
electric dipole moment near the current level of sensitivity would point to the existence of new
physics at or above the electroweak scale.

1. INTRODUCTION

Accelerator-based particle physics has the goal of prob-
ing the shortest distance scales directly, by colliding par-
ticles and their constituents at high energies. Thus far,
all high energy data is well described by the Standard
Model (SM) of particles and fields, with the last missing
element, the Higgs boson, identified recently [1, 2]. Con-
siderable attention is therefore focussed on the search
for ‘new physics’ (NP) that may complement the SM
by addressing some of its shortcomings. However, the
most prominent empirical evidence for new physics, asso-
ciated for example with neutrino mass and dark matter,
does not necessarily point to an origin at shorter distance
scales.

Fortunately, experiments at the energy frontier are
not the only tools available to probe NP; they are sup-
plemented by searches at the precision (and intensity)
frontier (see e.g. [3]). Precision observables, particularly
those that probe violations of exact or approximate sym-
metries of the Standard Model such as CP and flavor,
play an important role in the search for new physics [4–
7]. Their reach in energy scale, through loop-induced
corrections from new UV physics, can often extend well
beyond the direct reach of high energy colliders. How-
ever, measurements at low energies may be sensitive not
only to NP corrections coming from the short distances,
but also to NP at longer distances (lower mass) with ex-
tremely weak coupling to the SM. It is therefore prudent
to ask for which precision observables can measured devi-
ations from SM predictions unambiguously be identified
with short-distance NP at the electroweak (EW) scale
or above? Alternatively, one can ask when such devia-
tions might also admit an interpretation in terms of new
low-scale hidden sector degrees of freedom. This is the
question we will address in this paper.

The sensitivity of any constraint on new physics is de-
termined on one hand by the precision of the measure-
ment in question, and on the other by the accuracy and
precision of any SM calculations required to disentangle
background contributions. If the e⇥ective Lagrangian
is schematically written in the form L = LSM + LNP,
the possibility of discovery relies on being able to reli-
ably bound the NP contribution to the observable away
from zero. The natural tendency to interpret results in
terms of operators in LNP induced by ultraviolet NP
can be problematic, as LNP can in general also receive
contributions from light weakly-coupled degrees of free-
dom. This dilemma is nicely illustrated by the theoret-
ical interpretation of a NP discovery that has already
occurred, namely the observation of neutrino flavor os-
cillations. The experimental results are most straightfor-
wardly interpreted in terms of the masses and mixing of
the light active neutrino species [8, 9]. However, as is
well known, there are a number of possible explanations
for their origin. These include a short-distance expla-
nation in terms of the dimension-five Weinberg operator
[10], LNP ⇤ (HL)(HL)/�UV with �UV ⇥ ⇧H⌃, which
generates neutrino masses scaling as ⇧H⌃2/�UV. There
are also a variety of di⇥erent UV completions for this
operator, with and without heavy right-handed neutrino
states, present throughout the theory literature. While
this interpretation is certainly valid, there is also the pos-
sibility of interpreting neutrino mass as a consequence of
very light states N , with mN � mW and the quantum
numbers of right-handed neutrinos [11–16]. Such states
would typically be very weakly coupled to the SM, thus
escaping direct detection. The most prominent model in
this class is the simple three-generation extension of the
SM with N states that allow Dirac masses for the active
neutrinos. Thus we see that neutrino oscillations can be
interpreted as the result of UV or IR new physics (or



Conclusions
1. Light New Physics (not-so-large masses, tiny couplings) is a 

generic possibility. Some models (e.g. dark photon or dark Higgs-
mediated models) are quite minimal yet UV complete, and have 
diverse DM phenomenology.

2. Sub-GeV WIMP dark matter can be searched for via production & 
scattering or missing energy. New results from NA64, BaBar, 
MiniBoone are all less than few months/weeks old. No signal, 
improved constraints. SHiP will improve on that. 

3. Search for mediators (diversifying away from dark photon) benefit 
significantly from flavor searches. 

4. Taking direct detection below keV energy thresholds seriously 
allows probing sub-GeV masses of WIMPs and break into the 
super-weakly interacting DM territory probing freeze-in dark 
matter, absorption of DM particles etc. 
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