Search for the dark photon at NA48/2 and NA62

Mauro Raggi, Sapienza Università di Roma e INFN Roma On behalf of the NA48/2 and NA62 collaborations

Light Dark Matter @ Accelerators La Biodola 24-28 Maggio 2017

What is the universe made of?

???Dark Matter???

26.8% Dark Matter 68.3% Dark 4.9% Ordinary Energy Matter

- Standard model only includes <20% of the matter in the universe
 - We only know dark matter interacts gravitationally
- Many open questions
 - What is dark Matter made of?
 - How dark matter interact, if it does, with SM particles?
 - Does one or more new dark force exist?
 - How complex is the dark sector spectrum?

Simplest dark photon model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A' boson.
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

- In this **case the new coupling constant = e** is just proportional to electric charge and it is equal for both quarks and leptons.
- As in QED, this will generate new interactions with SM fermions of type:

$${\cal L}~\sim~g'q_far{\psi}_f\gamma^\mu\psi_f U'_\mu$$

- Not all the SM particles need to be charged under this new symmetry
- In the most general case q_f is different in between leptons and quarks and can even be 0 for quarks. P. Fayet, Phys. Lett. B 675, 267 (2009)

B. Holdom Phys.Lett. B166 (1986) 196

Dark photon and $g-2_{\mu}$

g-2 in the standard model

About 3s discrepancy between theory and experiment. Could be due to hadronic uncertainties on the Light by Light scattering?

10^{-1} g-2 and A' Excluded by $\Delta Br_{K to \pi ee} < 3.10$ Additional diagram with dark 10 <6.10⁻⁹ photon exchange can fix the discrepancy! (with sub GeV A' masses ⁽²⁾) Ц Can be 10^{-5} probed by search of resonances |muon g-2|<2 σ A' M. Pospelov 10 MeV 500 MeV 100 MeV Phys.Rev. D80 (2009) 095002 m_{ν}

Dark photon searches status 2015

■ Visible decays: A' \rightarrow ee, $\mu\mu$, $\pi\pi$,

Kinetic mixed dark photons simplest model

- Favored parameters values explaining muon g-2 (green band)
 - A'-boson light 10-100 MeV
- Status of dark photon searches
 - Beam dump experiments (grey)
 - Fixed target (Apex, A1)
 - Mesons decays (Babar, KLOE, Wasa)
- Theoretical exclusion from g_e -2 g_{μ} -2
 - Fight limit form α_{EM} (red filled area) PhysRevD.86.095029
- Much less constraints on "Invisible" decay mode
 - If $M_{\chi} < M_{A'}/2$, A' $\rightarrow \chi \chi$, ϵ^2 suppression to all visible modes
 - No assumption on α_D and no kinetic mixing

 $m_{A'}$ [GeV]

The NA48/2 and NA62 experiments @ SPS

NA48/2 collaboration: 15 institutes from 8 countries: NA62 collaboration: 29 institutes from 13 countries

NA48/2 (2003-04)

NA48/2 data taking : 4 months in 2003-04 (K[±]) 60 GeV Simultaneous K[±] beam

Magnetic Spectrometer

- 4 drift chambers and a dipole magnet

$$\frac{\sigma(p)}{p} = (1.02 \oplus 0.044 p)\% \text{ p in GeV/c}$$

$$\begin{array}{ll} \mathsf{K}^{\pm} & \to \pi^{\pm} \pi^{0} & \pi^{0} \to \gamma \mathsf{A}' \; \mathsf{A}' \to \mathsf{e}^{+} \mathsf{e}^{-} \\ \mathsf{K}^{\pm} & \to \pi^{\pm} \mathsf{A}' & \mathsf{A}' \to \ell^{+} \ell^{-} \end{array}$$

Liquid Krypton EM calorimeter (LKr)

- High granularity (13248 cells of 2x2 cm²)
- Quasi-homogeneous, 7m³ liquid Kr (27X₀)

$$\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.4\%$$
 E in GeV

PLB 746 (2015) 178 PLB 769 (2017) 67-76

Search for dark photons at NA62

- NA62 has an high intensity hadron beam and can search for A' using different experimental techniques and production mechanisms
 - Meson decay and proton bremsstrahlung: dedicated dump mode
 - Dedicated talk by M. Mirra
 - Mesons decay (K and pions): parasitic to πvv searches
 - $K^+ \rightarrow \pi^+ \pi^0 \quad \pi^0 \rightarrow \gamma A' \quad A' \rightarrow \chi \chi \quad A' \text{ invisible decays.}$
 - $K^+ \rightarrow \pi^+ A'$ with $A' \rightarrow \chi \chi$ or $A' \rightarrow \ell^+ \ell^-$ invisible and invisible

Mauro Raggi, Sapienza Universita' di Roma

Dark photon in π^0 decays

Dark photon in π^0 decays

Mauro Raggi, Sapienza Universita' di Roma

NA48/2 data sample

- Number of kaon decays in NA48/2 ('03/'04): $N_K \approx 2 \cdot 10^{11}$
 - 5 10¹⁰ π^0 tagged decays from $K^{\pm} \rightarrow \pi^{\pm} \pi^0$ and $K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$ decays
- **D** Exclusive search for the **decay chain** $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$
 - Search for a narrow peak in the e^+e^- invariant mass.
 - High efficiency trigger chain for 3-track vertices throughout all the data taking
 - Very good spectrometer mass resolution: $\sigma_{Mee} \approx 0.012 \text{ x } M_{ee}$
- DP final state $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$ identical to $\pi^0_D \rightarrow \gamma e^+e^-$;
 - Main background is $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$: BR(K_{2pD})=2.4 · 10⁻³
 - Sensitivity is limited by the irreducible K_{2pD} background.
- Signal acceptance:
 - depending on $M_{A'}$ from 4.5% down to 0.5% for high values $M_{A'}$.

■ A total of ~1.7x10⁷ candidates collected during 2003-04 data taking

Data sample: $K_{2\pi D} + K_{\mu 3D}$ selection

Statistical significance

Scanned DP mass range: 9 MeV/ $c^2 < M_{DP} < 120 \text{ MeV}/c^2$.

- Variable DP mass step: $\pm 1.5\sigma(M_{A'})$.
- DP search window: $\pm 0.5\sigma(M_{A'})$
- 404 DP mass hypothesis tested
- Confidence intervals for $N_{A'}$ are computed from:
 - N_{exp} , N_{obs} and δN_{obs} , δN_{exp} in the signal mass window
 - Frequentist confidence intervals Rolke-Lopez method.
- Local significance never exceeds 3₀: no dark Photon signal observed

Mauro Raggi, Sapienza Universita' di Roma

NA48/2 DP exclusion limit

DP exclusion summary Final result: PLB746 (2015) 178

Improvement of the existing limits in the range 9-70 MeV/c^2 .

If **DP** couples to SM through kinetic mixing and decays only to SM fermions, it is ruled out as the explanation for anomalous (g-2)µ.

Sensitivity limited by irreducible π^0_D background: upper limit on ϵ^2 scales as $\sim (1/N_K)^{1/2}$, modest improvement with larger data samples.

Impact of NA48/2 measurement

Impact of NA48/2 measurement

Favored region (g-2)µ completely excluded by NA48/2 measurement!

Final result: PLB746 (2015) 178

Search for $\pi^0 \rightarrow \gamma A' A \rightarrow \chi \chi$ at NA62

■ Search for K[±]→ $\pi^{\pm}\pi^{0}$ → $\pi^{\pm}\gamma$ A'→ $\pi^{\pm}\gamma\chi\chi$ searching for π^{\pm} one γ and M_{miss}

• Assuming BR(A'
$$\rightarrow \chi \chi$$
)=1
BR $(\pi^0 \rightarrow A' \gamma) = 2\epsilon^2 \left(1 - \frac{m_A^2}{m_{\pi^0}^2}\right)^3 \times BR (\pi^0 \rightarrow \gamma \gamma)$

- Mass reach bounded from above to π⁰ mass (~135 MeV)
 Strong kinematic suppression near the mass limit
- Search for a peak in the missing mass M^2_{miss} = (P_K P_π P_γ)²

\square Extraction of limits comparing to BR($\pi^0 \rightarrow \gamma\gamma$)

$$\frac{n_{\rm sig}}{n_{\pi 0}} = \frac{{\rm BR}(\pi^0 \to A'\gamma)}{{\rm BR}(\pi^0 \to \gamma\gamma)} \varepsilon_{\rm sel} \varepsilon_{\rm trg} \epsilon_{\rm mass}$$
$$\frac{BR(\pi^0 \to \gamma A')}{BR(\pi^0 \to \gamma\gamma)} \approx 2\varepsilon^2 |F(M_{A'}^2)|^2 \left(1 - \frac{M_{A'}^2}{M_{\pi}^2}\right)^3$$

Sensitivity: preliminary estimate

Data-driven BG estimate (peak resolution mostly left-right-symmetric)

- □ Limited amount of statistics used 1.5×10^{10} K⁺ (6.5% of 2016 sample).
- Promising preliminary limit at 90% CL on invisible A' decay

Dark photon in $K^{\pm} \rightarrow \pi^{\pm} A' A' \rightarrow \ell^{+} \ell^{-1}$

Mauro Raggi, Sapienza Universita' di Roma

Dark photon in $K^{\pm} \rightarrow \pi^{\pm} A' A' \rightarrow \ell^{+} \ell^{-}$

- $\Box \text{ Mixing from } K \to \pi^{\pm} \gamma^* \text{ with } \gamma^* \text{ mixing to } A'$ $\Gamma_{K \to \pi V} = \frac{\alpha \kappa^2}{2^{10} \pi^4} \frac{m_V^2 W^2}{m_K} f(m_V, m_K, m_\pi) \implies \text{Br}_{K \to \pi V} \simeq 8 \times 10^{-5} \times \kappa^2 \left(\frac{m_V}{100 \text{ MeV}}\right)^2.$ PHYS. REV. D 80, 095024 (2009)
- Depending on A' the decay type can end up in different final states similar to kaon decays:
 - Visible: $K \rightarrow \pi^{\pm} e^{+} e^{-}$ can hide $K \rightarrow \pi^{\pm} A'$ $A' \rightarrow e^{+} e^{-}$
 - Visible: $K \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ can hide $K \rightarrow \pi^{\pm} A' \quad A' \rightarrow \mu^{+} \mu^{-}$
 - Invisible: $K \rightarrow \pi^{\pm} v v$ can hide $K \rightarrow \pi^{\pm} A'$
- All of this mode are accessible in NA48/2+NA62 experiments!
- Signature being narrow mass peak in ℓ+ℓ- invariant mass or M_{Miss}

NA48/2 search for $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\mp}$

- NA48/2 search resonances in decays $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\mp}$:
 - Sample of $2 \times 10^{11} K^{\pm}$ decays collected in 2003–04.
 - Can be reinterpreted as: $K^{\pm} \rightarrow \pi^{\pm} A' \quad A' \rightarrow \mu^{\pm} \mu^{\mp}$
 - Limits on BR(K[±] $\rightarrow \pi^{\pm}A'$)BR(A' $\rightarrow \mu^{\pm}\mu^{\mp}$) in the mass region:
 - 210 MeV < $M_{A'}$ < 350 MeV as function of the lifetime
 - A' lifetime <10⁻¹² for explored region (ϵ^2 <10⁻⁵)
 - Upper Limit on BR($K^{\pm} \rightarrow \pi^{\pm}X$)BR($X \rightarrow \mu^{\pm}\mu^{\mp}$) in 10⁻⁹-10⁻¹⁰ region

NA48/2 K[±] $\rightarrow \pi^{\pm}\mu^{\pm}\mu^{\mp}$ and A' bounds

$K^+ \rightarrow \pi^+ \nu \nu$ and the A' invisible decays

In models assuming that the dark photon couples to SM through kinetic mixing eq $\neq 0$ K[±] $\rightarrow \pi^{\pm}vv$ can be used to constrain K[±] $\rightarrow \pi^{\pm}A'$ A' $\rightarrow \chi\chi$:

$$\begin{split} \Gamma(K^{\pm} \to \pi^{\pm} Z_d)|_{\varepsilon} &= \frac{\varepsilon^2 \alpha W^2}{2^{10} \pi^4} \frac{m_{Z_d}^2}{m_K^7} \sqrt{\lambda(m_K^2, m_\pi^2, m_{Z_d}^2)} \\ &\times [(m_K^2 - m_\pi^2)^2 - m_{Z_d}^2 (2m_K^2 + 2m_\pi^2 - m_{Z_d}^2)], \end{split}$$

Depending on how the model is built the limit can change significantly for example allowing the mass mixing with SM Z.

NA48/2 K[±] \rightarrow µ[±]ve⁺e⁻ decay

- Can exchange the radiated γ^* with A' decaying in e⁺e⁻
 - $K^{\pm} \rightarrow \mu^{\pm} \nu A'$ with $A' \rightarrow e^+e^-$
 - Mee spectrum can be searched for Mee resonance (in progress)
 - Measured limits on BR($M_{A'}$)10⁻⁸-10⁻⁹ range
 - No need for coupling to electrons! Can explore A' coupling to only μ models!
- \blacksquare Can exchange the radiated γ^* with scalar ϕ decaying in e^+e^-
 - Enhanced expected wrt by the coupling to m_{μ}^{2}
 - Batell,Lange, McKeen,Pospelov, Ritz ArXiv 1606.04943v1
- Measurement ongoing in NA48/2: PoS ICHEP2016 (2016) 636

Muon dominated couplings?

Model A: Mass proportionality, $g_{\ell} \propto m_{\ell}$. In particular, it implies that the couplings between the scalar S and electrons are 200 times smaller than those with muons. Despite this, the dominant decay channel for S below the di-muon threshold is S e+e-.

Model B: Coupling exclusively to muons, $g\mu > 0$ and $g_e = g_\tau = 0$.

 $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ needs quark related production mechanism. $K^{\pm} \rightarrow \mu^{\pm} \nu \mu^{+} \mu^{-}$ is also very interesting in this scenario pure muon coupling!

Recent results on dark sector search

- Search for Heavy Neutrinos in $K^+ \rightarrow \mu^+ \nu$ Decays.
 - ♦ ArXiv 1705.07510v1
 ▶ NA62
 - Can be recast as $K^+ \rightarrow \mu^+ \nu A'$ with $A' \rightarrow \chi \chi$
- \blacksquare Searches for lepton number violation and resonances in $K^{\pm}{\rightarrow}\pi^{\pm}\mu^{+}\mu^{-}$ decays
 - Phys.Lett. B769 (2017) 67-76 NA48/2
 - Can be recast as $K^+ \rightarrow \pi^+ A'$ with $A' \rightarrow \mu^+ \mu^-$
- Model independent measurement of the leptonic kaon decay $K^{\pm} \rightarrow \mu^{\pm} v e^{+}e^{-}$ with the NA48/2 experiment
 - Pos ICHEP2016 (2016) 636 NA48/2
 - Can be recast as $K^+ \rightarrow \mu^+ \nu A'$ with $A' \rightarrow e^+ e^-$
- Search for the dark photon in π^0 decays
 - Phys.Lett. B746 (2015) 178-185 NA48/2

Conclusions

■ NA48/2 set a limit on the A' decays to e⁺e⁻ (PLB746 (2015) 178)

- Improvement of the existing limits for visible decays in the range 9-70 MeV/c².
- Assuming kinetic mixing and dark photon decaying to lepton pairs only the whole favored by (g-2)μ region has been excluded

NA48/2 limit on A' decays to $K^{\pm} \rightarrow \pi^{\pm}X \times X \rightarrow \mu^{+}\mu^{-}$ (PLB 769 (2017) 67–76)

- The limit is not competitive as bound on kinetic mixing models
- Being the only one in the region 210-350 MeV not obtained with electrons can be relevant in non universal coupling models.

■ NA62 is able to investigate dark sector physics in kaon decays

- Advanced analysis of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \rightarrow \gamma A' A' \rightarrow \chi \chi$ for invisible A' decays
- Decays of $K^{\pm} \rightarrow \pi^{\pm} X \quad X \rightarrow \mu^{+} \mu^{-}$ and $X \rightarrow \chi \chi$
- Dark sector search in Dump more also very promising (A', ALPs HNL)
- NA62 implemented a dedicated di-lepton trigger for dark sectors studies!

Kaons are an exiting field to search for dark sectors candidates!

Mauro Raggi, Sapienza Universita' di Roma

The Be⁸ anomaly and the proto-phobic fifth force

