

European Organization for Nuclear Research

Radiation tolerant electronics for high energy physics experiments

Davide Falchieri Electronics Division, INFN Bologna

Aperitivo scientifico, 31 Marzo 2017

Outline

- Radiation definition and units
- Radiation effects on CMOS electronics
 - ASICs
 - min channel size: 250 nm, 130 nm & 65 nm
 - examples: CARLOS, FeI4, GBTx, RD53
 - FPGAs: rad-tol vs COTS
 - antifuse, Flash, SRAM
- Mitigation techniques
- Irradiation test facilities
- Our experience:
 - ALICE SDD
 - CMS Muon Barrel @Louvain la Neuve
 - ALICE TOF @Trento

Need for rad-tolerant electronics

- Space applications
- Avionics
- Nuclear power plants instrumentation
- Military application
- High Energy Physics experiments

ATLAS Pixels: 2 10¹⁵ n/cm²/10 years

Need for rad-tolerant electronics

ESA Sentinel-2

IC type	where	quantity	
ASIC	P/F	59	
ASIC	P/L	0	
FPGA	P/F	112	
FPGA	P/L	37	
uP	P/F	21	
uP	P/L	0	
Std ASIC	P/F	10	
Std ASIC	P/L	0	

FPGAs

Interaction radiation - Si

protons

•

•

•

neutrons

heavy ions

photons

pions

Possible high density from Heavy lon produced from nuclear interaction with Silicon nuclei

5

Radiation effects on electronics

TID + **SEE** are the major concerns in CMOS electronics $_{6}$

Radiation definitions and units

Radiation definitions and units

MeV cm^2/mg A Sample Cross Section VS. LET Curve ION Kr Surface LET in Si ON Ne Ar Ċu Xe Ion Species Energy Range in Si $(MeV \times cm^2/mg)$ (MeV) (μm) ¹H 28 4390 0.02 Knee Cross Section SEEs / Particle / CM^2 ⁷Li 0.37 1E-3 378 56 $\rho_{Si}{=}2330\ mg/cm^3$ ¹¹**B** 195 1.01 80 Saturation ¹²C 94 171 1.49 ¹⁶**O** 108 109 2.85 ¹⁹F 122 **99.3** 3.67 Weibull fit 1E-4 ²⁸Si 157 61.5 8.59 ^{32}S 171 54.4 10.1 ³⁵Cl 49.1 12.5 171 ⁴⁸Ti 39.3 196 19.8 Threshold ⁵¹V 21.4 196 37.1 1E-5 ⁵⁸Ni 220 33.7 28.4 ⁶³Cu 220 33.0 30.5 ⁷⁴Ge 231 31.8 35.1 ⁷⁹Br 241 31.3 38.6 ¹⁰⁷Ag ¹²⁷I 27.6 54.7 266 276 27.9 61.8 10 20 30 40 50 6Ó 70 80 9Ó ¹⁹⁷Au 275 23.4 81.7 LET MeV / mg / cm^2

cross-section (σ): the probability that the particle produces a SEE, given in cm^2/bit , or $cm^2/device$

Failure In Time rate (in 1 billion hours):

FIT/Mbit = $\sigma * \phi * 10^{6*}10^9$

Mean Time Between Failures:

MTBF = $1/(bits * \sigma * \phi)$

100 110

Вì

SEU rate (R) estimate

Huhtinen and Faccio, "Computational methods to estimate Single Event Upset rates in an accelerator environment"

This work shows that an irradiation with protons directly gives an estimate of the SEU rate in LHC: the measured σ at an energy of about 60MeV or more, multiplied by the total hadron ϕ (above 20MeV) foreseen in the position of interest in LHC, gives the expected upset rate.

Particles and damages

Dose $(rad(Si)) = LET *Fluence*1.610^{-5}$

Radiation	TID	Displacement (NIEL)	SEE
X-rays ⁶⁰ Co γ	Expressed in SiO_2 Almost identical in Si or SiO_2	No	No
p	Equivalences in Si ^{\$} @60MeV 10 ¹¹ p/cm ² =13.8krd @100MeV 10 ¹¹ p/cm ² =9.4krd @150MeV 10 ¹¹ p/cm ² =7.0krd @200MeV 10 ¹¹ p/cm ² =5.8krd @250MeV 10 ¹¹ p/cm ² =5.1krd @300MeV 10 ¹¹ p/cm ² =4.6krd @23GeV 10 ¹¹ p/cm ² =3.2krd	Equivalences in Si ^{\$,*} @53MeV 1 p/cm ² = 1.25 n/cm ² @98MeV 1 p/cm ² = 0.92 n/cm ² @154MeV 1 p/cm ² = 0.74 n/cm ² @197MeV 1 p/cm ² = 0.66 n/cm ² @244MeV 1 p/cm ² = 0.63 n/cm ² @294MeV 1 p/cm ² = 0.61 n/cm ² @23GeV 1 p/cm ² = 0.50 n/cm ²	Only via nuclear interaction. Max LET of recoil in Silicon = 15MeVcm ² mg ⁻¹
n	Negligible	Equivalences in Si ^{\$,*} @1MeV 1 n/cm ² = 0.81 n/cm ² @2MeV 1 n/cm ² = 0.74 n/cm ² @14MeV 1 n/cm ² = 1.50 n/cm ²	As for protons, actually above 20MeV p and n can roughly be considered to have the same effect for SEEs
Heavy Ions	Negligible for practical purposes (example: 10 ⁶ HI with LET=50MeVcm ² mg ⁻¹ deposit about 800 rd)	Negligible	Yes

^{\$}Energy here is only kinetic (for total particle energy, add the rest energy mc²)

*The equivalence is referred to "equivalent 1Mev neutrons", where the NIEL of "1MeV neutrons" is DEFINED to be 95 MeVmb. This explains why for 1MeV neutrons the equivalence is different than 1

SEU rates in LHC is dominated by hadrons with E > 20 MeV

Radiation effects on CMOS electronics

TID → how much the device parameters drift ? (device degradation)

TID effects

from ESA PSS-01-609 Issue 1 (May 1993)

TID effects

Good news: Shrinking the technology, the oxide thickness is reduced and also the threshold voltage variation

Soft SEU effects

SET: the higher the clock frequency, the higher the probability of an error being propagated

Hard **SEU** effects

Electrical latchup can be fired by:

- electrical transients on I/O lines,
- high T
- bad sequencing of power bias

Latchup can be fired by ionizing particles

SEL

Vin

vertical PNP

lateral NPN

What to do with SEL:

SEL needs to be faced by monitoring the supplied current and shutting off power and I/Os when a current bump is found

Mitigating TID & SEE effects: radiation hardening

Hardening:

by layout:

modifying the device geometrical layout

by process:

modifying one or more steps of the fabrication process **by design:**

improve the design to be rad-tolerant

EDAC : Error Detection And Correction

An <u>error-correcting code</u> (ECC) or forward error correction (FEC) code is a process of adding redundant data, or *parity data*, to a message, such that it can be recovered by a receiver even when a number of errors (up to the capability of the code being used) are introduced

hardening \rightarrow risk reduction comes at some cost!

SET mitigation with skewed clocks

- Beware!!
 - TMR voting and clock skewing reduce maximum spee
- increased area leads to higher interconnect delay

250 nm CMOS technology node ($t_{ox} = 5$ nm)

TID has been addressed by redesigning the digital library of standard cells with Enclosed Layout Transistors (ELTs)

linear transistor

EL Transistor

Enclosed layout

Standard layout

net positive charge trapped into the Si-SiO₂ interface

SEU

redundant logic, like TMR, Hamming codes ...

 \rightarrow no TID effect up to 140 Mrad (Si-SiO₂ interface removed by design)

- **TID** No effects up to 100 Mrad (Si) = $1.9 \ 10^{13} \text{ p/cm}^2$
- **SEU** No SEE up to 10^{11} p/cm²

200 LoL events	→ $\sigma = 2.5 \ 10^{-13} \ cm^2$
20 bit corruption events	→ $\sigma = 5.3 \ 10^{-14} \ cm^2$

CARLOS: 250 nm ASIC

ALICE SDD compression chip:

- 15 kgates
- 4 256-word RAMs
- die area: $4x4 \text{ mm}^2$

radiation environment:

- **TID:** 14 krad
- $\Phi = 3.5 \ 10^{11} \text{ n/cm}^2 \text{ in } 10 \text{ years}$

mitigation techniques adopted:

- use of ELT modified standard cells against **TID**
- no redundancy against SEUs

130 nm CMOS technology node ($t_{ox} = 2.2 \text{ nm}$) TID

The 130 nm feature size process enjoys an inherently high total dose radiation tolerance of the core transistors

 \rightarrow no need for ELTs

SEU to be proven on each project

Mitigation techniques adopted:

- TMR for all 366 configuration registers
- Forward error correction code (**FEC**)
- Watchdog
- 2 SEU-related registers:
 - SEU counter
 - FEC-RX correction counter

The user bandwidth is 80bits per BC, that is 3.2 Gbps

hardening by design 25

GBTx: 130 nm ASIC

TID (40 KeV X-ray up to 100 Mrad @ 100 krad/min)

SEU (Heavy Ion Irradiation Facility, Louvain la Neuve)

GBTx: 130 nm ASIC

SEU

		Lock errors		Frame errors	
Detector position	Flux (p/cm ² ·s)	(errors/(device.day))		(errors/(device.day))	
		RX	ΤХ	RX	TX
Exp. Hall	8.50E+01	2.5E-05	4.9E-06	-	3.6E-05
Outer Tracker	1.50E+05	5.5E-02	1.0E-02	-	7.0E-02
Endcap ECAL	2.98E+05	0.1	2.2E-02	-	0.2
Pixel	1.40E+07	7.8	1.4	-	10.0

lock & frame errors

expected errors per device per day

FeI4: 130 nm ASIC

•

•

٠

80M transistors

matrix of 336x80 pixels $(50x250 \mu m each)$

radiation environment:

- 300 Mrad TID •
 - $\Phi = 10^{16} \text{ n/cm}^2 \text{ in } 10 \text{ years}$

Mitigation techniques adopted:

- Configuration memory with TMR SEU hard custom cells \rightarrow latches with a Dual Interlocked Cell (**DICE**) architecture
 - Digital logic: TMR, Hamming
- Service Record indicating that a SEU has been detected in the command decoder

FeI4: 130 nm ASIC (irradiation tests before LHC)

 $\sigma = 2 \times 10^{-16} \text{ cm}^2$

FeI4: 130 nm ASIC (after 2 LHC years)

TID

After the first months of IBL data-taking in 2015, a significant increase of the LV current and a shift of the calibration parameters Threshold and ToT were measured.

65 nm CMOS technology node ($t_{ox} = 1.4$ nm)

region

Drain region

31

500M transistors matrix of 192x400 pixels $(50x50 \ \mu m \ each)$

radiation environment:

- 500 Mrad TID
- $\phi = 5 \ 10^6 \ n/cm^2 \ sec$

Recommendations (up to **500 Mrad**)

- **Cold** operation < -15°C
- For analog designs:
 - NMOS: $L \ge 120$ nm, any W Ok
 - PMOS: W ≥ 300nm, L ≥ 120nm

RD53A: 65 nm ASIC

Top PAD row (if CUP WB pads, can go down to \sim 130)				
Matrix: 192 rows x 400 columns				
GNDA VDDA GNDD VDDD VSS	Chip BOTTOM			
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ShLDO, Drivers/receivers PADs + ESD			

Mitigation techniques adopted:

- global configuration memory is protected with TMR **DICE** latches
- pixel configuration is protected with DICE latches ۲
- protection of memories and state machines ۰
- SEU-soft dummy registers for monitoring •
- trickle configuration (continuous external ۰ refreshing) \rightarrow no SEU hard config needed!

Rad-tol ASIC summary

not always true !!!

all processes

Radiation tolerance varies in different fabs and can change over time. It is necessary:

- to only qualify and use one fab
- to pay attention to W/L
- to carefully qualify each ASIC during the prototyping and production phases
- <u>qualify TID</u> and <u>SEE</u> for each chip depending on the environment it will <u>have to work in</u>

Accelerator and experiment equipment using COTS FPGAs in radiation areas

Accelerator

- Cryogenics
- Power Converter
- Quench protection system
- Beam Instrumentation

Experiments

In the HEP front-end electronics installed around 2005, FPGAs were mostly used for control and readout logic with external high speed links. With the current upgrades FPGAs are moving in ...

Architecture of a FPGA

configuration memory

FPGA: it is a user-programmable matrix of logic blocks with programmable interconnections that can implement **any** logic function or algorithm.

SEUs affecting configuration memory

Switch Matrix (i.e. routing)

Radiation tolerant FPGAs

configuration memory technology

Antifuse

The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection

RTAX, RTSX

SRAM

Why choosing a RT Antifuse?

PROs:

- reliability:
 - SEL immune
 - TID:
 - OK up to 300 krad
 - SEU:
 - σ
 - LET_{TH}
- $< 1E-9 \text{ cm}^2$
- $> 37 \text{ MeV cm}^2/\text{mg}$
- RAM bits SEU rate < 1E-10 upsets/bit-day (worst case GEO)
- no errors in the configuration memory by design
- long life time ۲

CONs:

- very small code possible
- OTP
- high cost
- programming not always successful

Rad-tol FPGAs: RTG4 (Microsemi Flash based)

PROs:

- reliability:
 - SEL immune up to 103 MeV cm²/mg
 - TID:
 - OK up to 125 krad
 - SEU:
 - $\sigma < 1E-11$ errors/bit/day
 - LET_{TH} > 37 MeV cm²/mg
 - RAM bits SEU rate < 1E-10 upsets/bit-day (worst case GEO)
 - no errors in the configuration memory by design
- long life time
- a lot of resources

CONs:

• high cost

Rad-tol FPGAs: XQR5VFX130 (Xilinx SRAM based)

PROs:

- reliability:
 - SEL immune up to 100 MeV cm²/mg
 - TID:
 - OK up to 1 Mrad(Si)
 - SEU:
 - sigma < 3.8E⁻¹⁰ errors/bit/day (worst case GEO)
 - SEU Hardened Configuration Memory Cells
- long life time
- a lot of resources (Virtex5 equivalent)

CONs:

- high cost
- need to use an old ISE version (13.2)

COTS FPGAs

configuration memory technology

Antifuse

Axcelerator® FPGAs

- Nonvolatile, high-speed antifuse FPGAs
- 125K 2M system gates
- 350 MHz system performance
- 0.15 µm, CMOS antifuse process

SX-A FPGAs

- Sea-of-modules antifuse FPGAs
- 12K 108K system gates
- 250 MHz system performance
- 66 MHz PCI compliant

eX FPGAs

- · Low-power, low-density antifuse FPGAs
- 3K 12K system gates
- · 350 MHz system performance
- 0.22 µm CMOS antifuse process

MX FPGAs

- · Mixed-voltage and 5 V-only operation
- 3K 54K system gates
- · 250 MHz system performance a
- Dual-port SRAM modules & multiplex I/O

Flash

E XILINX

SRAM

28nm

CMS Muon Barrel radiation environment (in 10 years): ϕ : $3 \times 10^{10} \, \mathrm{cm}^{-2}$ ϕ (neutrons with energy > 20 MeV): $1 \times 10^9 \, \mathrm{cm}^{-2}$ TID: $0.01 \, \mathrm{krad}$

- Louvain La Neuve Cyclotron \rightarrow proton beam
- beam energy: 30 65 MeV
- Φ : 10⁸ p cm⁻² s⁻¹ (can be reduced to 10⁷ p cm⁻² s⁻¹)
- beam composed by bunches of 7 ns @ 18.3 MHz
- circular section, \emptyset 10 cm, uniform density
- equivalence factor: 10^9 proton cm⁻² = 1.4 Gy

Example: pASIC A54SX32

- 2 450 bits registers each
- refreshed and monitored @ 1 MHz
- monitoring cycle:
 - 1. read monitor register
 - 2. load target register
 - 3. read monitor register
- searching for <u>transient</u> and <u>static</u> upset events

TID

• 1 observed event, for the Actel A54SX32 chips tested (w/o dividing by the # of FF in a chip) $\sigma_{\rm SEU} < 2.9 \ 10^{-12} \ {\rm cm}^2$ 90% u.l., for 59 MeV protons

SEE

• Following **Huhtinen** and **Faccio**, we calculate for the entire TSM system of 750 chips

R < 2.2 SEU in 10 years of DT running

43

→ medium radiation levels

- PROs:
 - TID limit: ~500 Gy
 - SEL immune
 - configuration memory upset immune
 - small σ_{SEU} with TMR
 - Reprogrammable
- CONs:
 - TID limit is lower than the antifuse
 - reprogrammability feature not working above 200 Gy
 - limited resources in terms of logic gates (i.e. DSP math)

The **GEFE** board is a multipurpose FPGA-based radiation tolerant card. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to **50 krad** (500 Gy).

- PROs:
 - TID limit: ~250 Gy
 - configuration memory upset immune up to 90.3 MeV cm²/mg

- SEL immune up to LET = $24 \text{ MeV cm}^2/\text{mg}$
- small σ_{SEU} with TMR
- reprogrammable
- cheap
- CONs:
 - TID limit is lower than the ProASIC3
 - charge pump circuit + Flash transistors sensitive to TID

development tools not so evolved

Feature	Test Fluence (Neutrons/cm ²)	Error Rate Ground Level (Sea Level, NYC, FIT)	Error Rate Aviation (40,000', NYC, FIT)		
Flip-flop	4.35 x 10 ¹¹	218.3 FIT / million flip-flops	1.13 x 10 ⁵ FIT / million flip-flops		
LSRAM	1.7 x 10 ¹¹	340.6 FIT / million bits	1.75 x 10 ⁵ FIT / million bits		
uSRAM	1.7 x 10 ¹¹	175.3 FIT / million bits	9.04 x 10 ⁴ FIT / million bits		

- ϕ : 2.6 10¹⁰ n/cm² (1 MeV neutron equivalent)
- $\Phi: \qquad 0.26 \text{ KHz/cm}^2 (> 20 \text{ MeV hadrons})$

TID: 0.13 Krad

72 DRM2 boards are needed

Beware! Igloo2 vs RTG4 under radiation

Total Dose (krad)

48

Total Dose (krad)

- PROs:
 - plenty of resources, up to date technologies
 - powerful development tools
 - high TID endurance
 - not too expensive
 - lot of literature available
- CONs:
 - SEUs in configuration memory \rightarrow scrubbing needed

- mitigation needed for FFs and Block RAM
- they have to be rad-qualified on the field

Rosetta project

Test currently is operational at 3 altitudes:

- at sea level in San Jose
- at 5,200 feet in Albuquerque
- at 12,250 feet at White Mountain Research Center

SEU fit rate calculator

ilinx SEU FIT-Rate Calc	culator									
© Copyright 2010-2014	XILINX, Inc. All rights reserved.	L)	R	SE	U FIT Rate For Estin	e Calo mating F	culato IT Rates I Relea: Ite data taken f	Prior to I se Version V rom UG116 V	vion Witigat 3.2 9-22- /10.0 (Q10	ic ion 2014
Device Setting	ys		Environmental Settings		- Report					
Family	Spartan-6	- F	Location (Real Time FIT	ŋ	Relative Flux	16,69				
Dovico	VC65LV150	-	Elevation 4500	• m	Design					
Number of Dev	vices		C Feet @ M	eters	- ,	90% C.I. LL	Nominal	90% C.I. UL		
Design			• Eorigitude • • East © W	/est	Config Mem	42.430	47.674	53.872	FIT	
– Design Resour	rces	_1	Latituda 40		Config MTBU	2,7	2,4	2,1	Years	•
CRAM DVF/E	Essential Bits		• North C Sc	▲ J	BRAM Mem	28.235	31.724	35.848	FIT	
•	► <u>50</u> %				BRAM MTBU	4,0	3,6	3,2	Years	•
Unprotected			User Inputs			Min	Nominal	Мах		-
4	134 / 134		Flux 12,9 N/cm ² /	hour 👻	SEU Detection	1,86	13,6	27,1	ms	
	· · · ·		- Location (Real Time FIT		SEU Correction	POST CR	C)	-	ms	
 Mitigation Se 	ettings	1	City New York, NY, USA	- -	· · · · · · · · · · · · · · · · · · ·				_	
IP/Embedded	d SEM IP 🗨				Operation Time	1	Years 👻			
Input Clock F	requency					90% C.I. LL	Nominal	90% C.I. UL	_	
	▶ 35 MHz				Predicted SEU	1	1	1	Events	
					Log					
					Results posted to RES Switching to Xilinx Air Switching to Xilinx Air Switching to Xilinx Air	SULTS worksh borne SEU Mo borne SEU Mo borne SEU Mo	ieet. odel based on I odel based on I odel based on I	EC-62396 an EC-62396 an EC-62396 an	d Boeing d d Boeing d d Boeing d	lata lata lata
	Reset							Post		

Xilinx FPGAs neutron cross section per bit

Technology Node	Product Family	Neutron Cross-section per Bit ⁽¹⁾			FIT/Mb (Alpha Particle) ⁽²⁾			FIT/Mb ⁽⁶⁾ (Real Time Soft Error Rate) ⁽³⁾		
		Config. Memory	Block	Error	Config. Memory	Block RAM	Error ⁽⁴⁾	Config. Memory	Block RAM	Error ⁽⁴⁾
250 nm	Virtex	9.90 x 10 ⁻¹⁵	9.90 x 10 ⁻¹⁵	±18%				160	160	±20%
180 nm	Virtex-E	1.12 x 10 ⁻¹⁴	1.12 x 10 ⁻¹⁴	±18%				181	181	±20%
150 nm	Virtex-II	2.56 x 10 ⁻¹⁴	2.64 x 10 ⁻¹⁴	±18%				405	478	±8%
130 nm	Virtex-II Pro	2.74 x 10 ⁻¹⁴	3.91 x 10 ⁻¹⁴	±18%				437	770	±8%
90 nm	Virtex-4	1.55 x 10 ⁻¹⁴	2.74 x 10 ⁻¹⁴	±18%				263	484	±11%
90 nm	Spartan-3	2.40 x 10 ⁻¹⁴	3.48 x 10 ⁻¹⁴	±18%				190	373	-50% +80%
90 nm	Spartan-3E Spartan-3A	1.31 x 10 ⁻¹⁴	2.73 x 10 ⁻¹⁴	±18%				104	293	-80% +90%
65 nm	Virtex-5	6.70 x 10 ⁻¹⁵	3.96 x 10 ⁻¹⁴	±18%				165	692	-13% +15%
45 nm	Spartan-6	1.00 x 10 ⁻¹⁴	2.20 x 10 ⁻¹⁴	±18%	135	180	-50% +100%	188	395	-11% +12%
40 nm	Virtex-6	1.26 x 10 ⁻¹⁴	1.14 x 10 ⁻¹⁴	±18%	9	94	-48% +110%	106	251	-12% +14%
28 nm	7 series FPGAs	6.99 x 10 ⁻¹⁵	6.32 x 10 ⁻¹⁵	±18%	25	22	-64% +374%	83	75	-13% +15%

Example ($\Phi = 0.26 \text{ KHz/cm}^2$)

 $R = \sigma x \Phi = 6.32 \ 10^{-15} \ x \ 260 = 1.6 \ 10^{-12} \ SEUs /(bit s)$

For Kintex7 XC7K325T & 72 devices $N_{CRAM} = 67930000 \rightarrow 1 \ 10^{-4} \text{ SEUs/(device s)} \rightarrow 1 \ \text{SEU/2.7 h} \rightarrow 1 \ \text{SEU/3min in total}$ $N_{BRAM} = 16404480 \rightarrow 2 \ 10^{-5} \ \text{SEUs/(device s)} \rightarrow 1 \ \text{SEU/13 h} \rightarrow 1 \ \text{SEU/11 min in total}$

SRAM based FPGA configuration memory: scrubbing

Upset Type	Detection	Correction	Total Scrubbing
SBUs	8.02 ms	4.5 us	8.024 ms
Two-Bit	8.02 ms	1.86 ms	13.38 ms
Odd MBUs	16.04 ms	1.86 ms	21.40 ms
Even MBUs	8.02 ms	1.86 ms	13.38 ms
Full Readback Scrub	1.82 s	1.86 ms	1.822 s

Scrubbing can be done with an internal device (like **SEM IP**) or an external rad-tol device

FPGA TMR: the cost of mitigation

from Michael J. Wirthlin

Description	Unmitigated	TMR No Scrubbing	TMR BRAM Scrubbing	TMR FPGA Scrubbing	TMR Both Scrubbing
Faults Injected (n)	1,831,859	1,369,445	1,502,340	8,840,565	29,443,885
Observed Failures (k)	6,501	1,200	1,100	1,150	2,037
MTBF	282	1,141	1,366	7,687	14,455
Est. Sensitive Bits	240,539	59,393	49,627	8,817	4,689
Improvement	$1.00 \times$	$4.05 \times$	$4.85 \times$	$27.28 \times$	51.30×

Synopsys Synplify Premier SW helps implementing TMR 54

Choosing SRAM-based FPGAs: ALICE ITS upgrade

error mitigation by external scrubbing + TMR !

Choosing SRAM-based FPGAs: ATLAS TileCal upgrade

error mitigation by redundancy !

TID: < .2 Gy/year <10¹⁰ p/cm²/year

Irradiation of samples

TID

- photons:
 ⁶⁰Co
 X-ray tubes
- protons

SEE $_{\text{Oxide (SIO₂)}}$ protons (E > 20 MeV) neutrons (E > 20 MeV) heavy ions

protons can be used to study both **TID** and **SEE**

- # TID Co-60 Testing
 - No device preparation required
- # Displacement damage and SEE Proton Testing
 - No device preparation required
- # SEE Heavy ion Testing de-l
 Device preparation required

de-lidding

delidded Virtex-II

Irradiation facilities in Europe

Several European Accelerator Facilities have ions and proton energies suitable for SEE testing:

- Proton Irradiation Facility (**PIF**) at the Paul Scherrer Institut (PSI), Villigen, Switzerland (used since 1992)
- Heavy Ion Irradiation Facility (**HIF**) at the University Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium (used since 1996)
- RADiation Effects Facility (**RADEF**) at the University of Jyväskylä, Jyväskylä, Finland (used since 2005)
- Cyclotron-based fast neutron facility at NPI Rez (Prague):
 - $\Phi: 10^{11} \text{ n/cm}^2 \text{ s up to } 32 \text{ MeV}$
- The Svedberg Laboratory proton beam facility (Uppsala):
 - $\Phi: 10^{11}-10^{12} \text{ p/cm}^2 \text{ s from } 20 \text{ up to } 180 \text{ MeV}$

Irradiation facilities in Italy

Legnaro (SIRAD):

- ion species from ¹H (22-30 MeV) up to ¹⁹⁷Au (1.4 MeV/a.m.u.)
- LET from 0.02 MeV×cm²/mg (¹H) up to 81.7 MeV×cm²/mg (¹⁹⁷Au)
- high Φ (>10⁸-10⁹ ions/cm² s) or low Φ (>10²-10⁶ ions/cm² s) irradiation
- neutrons (0-24 MeV)
- **TID**: X-rays @ 120 rad(Si)/s, γ-rays @ 1-5 rad(Si)/s with Co-60
- Catania (LNS):20 MeV/n heavy ions for SEE60 MeV protons for DD

Pavia (CNAO): 250 MeV protons and 480 MeV carbon ions

Trento (TIFPA): 60-200 MeV protons for TID + SEE

Proton therapy Center (Trento)

- New irradiation facility developed jointly by **INFN TIFPA** and Trento proton therapy center
- 60-200 MeV proton beam ($\Phi = O(10^7 10^9 \text{ p/(cm}^2 \text{ s}))$
- proton beam spot with $r \sim 1 \text{ cm} (\sigma = 3.4 \text{ mm})$

One cyclotron line is devoted to researchers with the following time slots:

- MON-FRI: h 18-22
 - SAT: h 8-14

Proton therapy Center for COTS qualification

Our choice:

I N F N

Istituto Nazionale

- 200 MeV proton beam ($\Phi = O(10^7 10^9 \text{ p/(cm}^2 \text{ s}))$
- proton beam spot with $r \sim 1 \text{ cm} (s = 3.4 \text{ mm})$

Proton therapy Center (Trento): tested devices

Target TID: 0.13 Krads, tested up to 1.3 Krads (10x security factor)

Irradiation tests @ Trento

 $\Phi \rightarrow$ dose with Faccio's table

Results:

- **TID**:
 - ✓ USB-RS232 adapter, clock, level translators and low drop regulators: OK!
 - ✓ IGLOO2 reprogrammed successfully after 1.3 krads
 - X Optical transceivers (**Finisar**) failed after few krads → we then tested **Avago** SFP+ with much better performances (no SEL)
- **SEE:**
- \checkmark IGLOO2 BRAM σ_{SEU} registered (??? due to SEL ...)
- \checkmark SSRAM σ_{SEU} : 1.2 10⁻¹⁵/(cm² bit) (no SEL)

CHARM @ CERN

(Cern High Energy Accele Rator Mixed-Field Facility)

Main purpose

Radiation tests of electronic equipment and components in a radiation environment similar to the one of the accelerator

Large dimension of the irradiation room

- large volumes electronic equipment
- high number of single components
- full systems

Numerous representative radiation fields

- Mixed-Particle-Energy: Tunnel and Shielded areas, atmospheric and space environments
- direct beam exposure (proton beam 24 GeV)

Primary protons impinge the target (concrete, iron): a secondary field is created

CHARM @ CERN

Where to get info on rad-tol devices

From Tullio Grassi:

https://twiki.cern.ch/twiki/bin/viewauth/FPGARadTol/InformationOfInterest

RADWG: Radiation Working Group (RadWG)

http://radwg.web.cern.ch/RadWG/Pages/info.aspx

ATLAS radiation hard electronics

http://atlas.web.cern.ch/Atlas/GROUPS/FRONTEND/radhard.htm#Database

TWEPP Microelectronics WG + FPGA working group

Radiation conferences

NSREC (Nuclear and Space Radiation Effects Conference) **RADECS** (RADiation and its Effects on Components and Systems)

15-17 March 2016 European Space Research and Technology Centre

Conclusions

- Rad-tol devices are on the market, but they are way too expensive
- We need to qualify COTS components or design ASICs and test them

ASICs:

- modern silicon technologies are very robust against **TID**
- apply mitigation techniques
- choose a fab and keep using it!
- qualify samples at irradiation sites (protocol)!

FPGAs:

- **TID** < 20 Krads \rightarrow use Flash-based devices
- TID > 20 Krads → use SRAM-based devices (implement scrubbing + TMR) or antifuse
- purchase samples from the same production lot!
- apply mitigation techniques
- qualify samples at irradiation sites (protocol)! then
- qualify systems at irradiation sites (protocol)!

Backup slides

DICE storage cell

SRAM based FPGA configuration memory: scrubbing

<u>An upset in any configuration bit does not create a soft functional error per se.</u> The bit has to be one that is critical to the function in order for a soft error to occur. The number of unused bits and non-critical bits reduces the soft error rate by what is known as the **device vulnerability factor (DVF)**.

The DVF for a typical design is 5% (one in 20 upsets, on average, cause a functional soft error.

Exploit fault injection to see how SEUs really affect your design !!! 72
FPGA vs ASIC use @ CERN

Accelerator

Experiments

- In the accelerator sector the use of ASICs is very limited due to the high development time and resources needed
- COTS FPGAs are the primary choice
- In the experiments the high radiation levels close to the interaction points and the high performances required a custom ASIC development
- In environments with low/medium radiation and where power/integration issues are less critical FPGAs are now an attractive alternative !!!

Benefits

- COTS: low cost (high volume required)
- low development costs
- re-programmable
- well developed & affordable platforms of tools

28 nm CMOS technology node (high-k instead of SiO₂)

28 nm CMOS technology node (high-k instead of SiO₂)

130 nm CMOS technology node

leakage paths are technology dependent \rightarrow one technology fab has to be chosen

I/V curve of a Floating Gate device (Flash)

Fig. 4. I–V curves of an FG device when there is no charge stored in the FG (curve A) and when a negative charge \bar{Q} is stored in the FG (curve B) [14].

Flash: charge injection mechanisms

- Hot-electrons injection
- Fowler-Nordheim tunneling mechanism
 - high E through a thin oxide

With a relatively thick oxide (20–30 nm) one must apply a high voltage (20–30 V) to have an appreciable tunnel current. With thin oxides, the same current can be obtained by applying a much lower voltage. An optimum thickness (about 10 nm) is chosen in present devices, which use the tunneling phenomenon to trade off between **performance constraints** (programming speed, power consumption, etc.), which would require thin oxides, and **reliability concerns**, which would require thick oxides.

SRAM bits scrambling

A0	A1	A2	A3	A4	A5	A 6	A 7
B0	B1	B2	В3	Β4	В5	B6	B7
C0	C1	C2	C3	C4	C5	C6	C7
D0	D1	D2	D3	D4	D5	D6	D7
E0	E1	E2	E3	E4	E5	E6	E7
F0	F1	F2	F3	F4	F5	F6	F7
G0	G1	G2	G3	G4	G5	G6	G7
Н0	H1	H2	нз	H4	H5	H6	H7

A single radiation event can cause a multiple-bit upset (MBU). If the SRAM bits in a logical word are physically adjacent, the MBU can result in uncorrectable errors. For example, words D and E have <u>uncorrectable</u> multi-bit errors.

A0	A1	A2	A3	A4	A5	A 6	A7
в0	B1	В2	В3	В4	В5	B6	В7
C0	C1	C2	C3	C4	C5	C6	C7
D0	D1	D2	D3	D4	D5	D6	D7
E0	E1	E2	E3	E4	E5	E6	E7
E0 F0	E1 F1	E2 F2	E3 F3	E4 F4	E5 F5	E6 F6	E7 F7
E0 F0 G0	E1 F1 G1	E2 F2 G2	E3 F3 G3	E4 F4 G4	E5 F5 G5	E6 F6 G6	E7 F7 G7

If the SRAM bits in each logical word are physically separated, the probability of the MBU resulting in uncorrectable errors is dramatically reduced.

For example, words D, E, F, and G have single-bit errors which are <u>correctable</u>.

SRAM as a SEU monitor

Design, Testing and Calibration of a "Reference SEU Monitor" System.

by

¹R. Harboe-Sørensen, ²F.-X. Guerre & ²A. Roseng.

¹European Space Agency/ESTEC - The Netherlands ²Hirex Engineering, Toulouse - France

Abstract

This presentation summarises steps taken by ESA in order to construct and calibrate a 'Reference SEU Monitor' system intended for use as a reference system at accelerators. Beam characteristics can be verified by experimenters via this simple system, which uses an SRAM as the detecting element and a laptop as the controller.

RadMon in the LHC tunnel

 $3V \rightarrow 5V \rightarrow 0$ $\omega(E) \rightarrow 0$

1

HEH and thermal neutron fluence with SRAM memories

Choosing SRAM-based FPGAs: LHCb RICH photodetectors

With such high **TID** values the only options are **SRAM-based or anti-fuse FPGAs**: currently a Kintex-7 being studied

😟 Device Status Report

Device: M2GL090T (M2GL090T) Programmer: 86988 (usb86988)

L				
Device Status:	IDCode (read f	from the device) (HEX):	2F8071CF	
	Device Certifica	ate Family: Die:	Igloo2 M2GL090	
	Design Informa	ation		
	Design Informe	Design Name: Design checksum (HEX): Design Version: Back Level: Operating voltage: Internal Oscillator:	DRM2_top D43 0 1.2V 50MHz	
	Digest Informa	tion		
		Fabric Digest (HEX):	24757afd3e69b38195ca8dd76a1ea54a 0000f78130fa81a379418ec7d7af14e4	
		eNVM_0 Digest (HEX):	55b852781b9995a44c939b64e441ae27 24b96f99c8f4fb9a141cfc9842c4b0e3	
		eNVM_1 Digest (HEX):	55b852781b9995a44c939b64e441ae27 24b96f99c8f4fb9a141cfc9842c4b0e3	how many times
	Device Security	Cattions		the FPGA has
	Device Security	Factory test mode access:	Allowed.	
		Power on reset delay:	100ms	already been
		System Controller Suspend Mod	e: Disabled.	undudy occh
	Programming Ir	nformation		programmed
		Cycle count:	129	r-• <i>0</i> -•••••
		VPP Range: Temp Range:	HIGH (VPP >= 3.3V) HOT	
		*Algorithm Version: * Programmer: * Software Version: * Programming Software: * Programming Interface Protoc * Programming File Type:	2 FlashPro 4 FlashPro v11.7 FlashPro Express col: JTAG STAPI	

NOTE: * - The above Information is only relevant if the device was programmed through JTAG or SPI Slave mode.

130 nm CMOS technology node

RINCE (Radiation Induced Narrow Channel Effect)

There is also a similar effect on **RISCE** (Radiation Induced Short Channel Effect)

IMEC MPW calendar for 2017

тямс	J	F	М	Α	Μ	J	J	Α	S	0	N	D
TSMC 0.18 CMOS Logic or Mixed-Signal/RF, General	3,25	7,22	1,29	12,26	9,24	7,21	12,26	8,23	12,27	4,25, 31	22	5
TSMC 0.18 CMOS High Voltage BCD Gen Generation 2		7,22	1,29	12	3	7,22	27	31	5	5,16, 20	24	
TSMC 0.13 CMOS Logic or Mixed-Signal/RF, General or Low Power (8-inch)		7	14		9	14		9	14		9	
TSMC 0.13 CMOS Logic or Mixed-Signal/RF, General or Low Power (12-inch)				12		25			8			
TSMC 90nm CMOS Logic or Mixed-Signal/RF, General or Low Power			1	26		28		30			1	
TSMC 65nm CMOS Logic or Mixed-Signal/RF, General or Low Power	3	1,22		5,26	31	28		2,30		4,25	29	
TSMC 40nm CMOS Logic or Mixed-Signal/RF, General or Low Power (no triple gate oxide)	25	15	29	19	24	21	26	23	27	18	22	
TSMC 28nm CMOS Logic, HPL/HPM/HPC, RF HPL/HPC (reserve 4 months in advance)		1	1	5	3	7	5	9	6	11	8	13

Data in RED are preliminary scheduled

UMC	J	F	М	Α	Μ	J	J	Α	S	0	N	D
UMC L180 Logic GII/Mixed-Mode/RF	30		27			5	24			2		4
UMC L180 EFLASH Logic GII (1)			6				3				13	
UMC CIS180 Image Sensor 1P4M – CONV diode (1)			27							10		
UMC CIS180 Image Sensor 2P4M – ULTRA diode (1)			27							10		
UMC L130 Logic/ Mixed-Mode/RF			6			26					6	
UMC L110AE Logic/Mixed-Mode/RF	3	27		24		19		28		30		11
UMC L65N Logic/Mixed-Mode/RF - LL		6		3*	1	19*	31		18*	30		11
UMC L65N Logic/Mixed-Mode/RF - SP		6		3*	1	19*	31		18*	30		11
UMC 55N EFLASH EEPROM LP SPLIT GATE				3		19			18			11
UMC 40N Logic/Mixed-Mode – LP		6	27		1	26	31			2	20	
UMC 28N Logic/ Mixed-Mode – HPC (1)		21				12			11		27	

Other foundries are also available:

- ON Semiconductor (from $0.7\mu m$ to $0.18 \mu m$) ٠
- AMS (from 0.35 μm to 0.18 $\mu m)$ ۲
- IHP (from 0.25 μ m to 0.13 μ m) ٠
- X-FAB (0.18 µm) ٠

USE MULTIPLE VT CELLS

 Multi-V_t process reduces leakage power by an order of magnitude Multiple threshold technologies more common

Low V_t device = fast, high leakage

High V_t device = slow, low leakage

Achieves both active and standby leakage reduction

87

VARIATION

INCREASE OF THE IMPACT OF THE VARIATIONS

	Tox (Å)	∆Tox (Å)	∆Tox/Tox	Lg (nm)	∆L (nm)	∆L/Lg
130nm	22	1	4.5%	130	5	3.1%
90nm	16	1	6.3%	90	5	5.6%
65nm	12	1	8.3%	65	5	7.7%

Lg (nm)	250	180	130	90	65	45
Vt (mV)	450	400	330	300	280	200
σ-Vt (mV)	21	23	27	28	30	32
(σ-Vt)/Vt	4.7%	5.8%	8.2%	9.3%	10.7%	16%

