Simulation of e-ASTROGAM

V. Fioretti (INAF/IASF Bo) A. Bulgarelli (INAF/IASF Bo), A. Aboudan (CISAS), M. Tavani (INAF/ IAPS), I. Donnarumma (INAF/IAPS), R. Campana (INAF/IASF Bo), F. Longo (INFN), V. Tatischeff (CSNSM), D. Bernard (LLR/IN2P3)

> eASTROGAM Workshop: the extreme Universe 28/02 – 02/03/2017 Padova

- Development of the e-ASTROGAM simulation, reconstruction, and analysis pipeline in the pair production regime, with focus on the tracker design and optimization
- Sensitivity evaluation in the 10 MeV 3 GeV energy range

E (MeV)	ΔE spectrum ^(a) (MeV)	PSF ^(b)	Effective area ^(c) (cm ²)	Inner Galaxy Backgr. rate (count s ⁻¹)	Inner Galaxy Sensitivity (ph cm ⁻² s ⁻¹)	Galactic Center ^(d) Sensitivity (ph cm ⁻² s ⁻¹)	Extragal. Backgr. rate (count s ⁻¹)	Extragal. Sensitivity 3σ (ph cm ⁻² s ⁻¹)
10	7.5 - 15	9.5°	215	3.4×10^{-2}	7.7×10^{-6}	1.3×10^{-5}	3.8×10^{-3}	2.6×10^{-6}
30	15 - 40	5.4°	846	1.6 × 10 ⁻²	1.4×10^{-6}	2.4×10^{-6}	1.6×10^{-3}	4.3×10^{-7}
50	40 - 60	2.7°	1220	4.0×10^{-3}	4.6×10^{-7}	8.0 × 10 ⁻⁷	3.4×10^{-4}	1.4×10^{-7}
70	60 - 80	1.8°	1245	1.3×10^{-3}	2.6×10^{-7}	4.5×10^{-7}	1.0×10^{-4}	7.2×10^{-8}
100	80 - 150	1.3°	1310	5.1 × 10 ⁻⁴	1.6×10^{-7}	2.7×10^{-7}	3.2×10^{-5}	3.9×10^{-8}
300	150-400	0.51°	1379	4.8×10^{-5}	4.5×10^{-8}	7.8×10^{-8}	1.1×10^{-6}	6.9 × 10 ⁻⁹
500	400 - 600	0.30°	1493	1.4×10^{-5}	2.2×10^{-8}	3.8×10^{-8}	1.8×10^{-7}	3.3 × 10 ⁻⁹
700	600 - 800	0.23°	1552	6.3 × 10 ⁻⁶	1.5×10^{-8}	2.5×10^{-8}	7.6×10^{-8}	3.2×10^{-9}
1000	800 - 2000	0.15°	1590	2.1×10^{-6}	8.3 × 10 ⁻⁹	1.4×10^{-8}	2.1×10^{-8}	3.1 × 10 ⁻⁹
3000	2000 - 4000	0.10°	1810	3.3×10^{-7}	2.9×10^{-9}	5.0×10^{-9}	2.9×10^{-9}	2.8×10^{-9}

(a) Source spectrum is an E^{-2} power-law in the range ΔE .

(b) Point Spread Function (68% containment radius) derived from a single King function fit of the angular distribution.

(c) Effective area after event selection.

(d) The background for the Galactic Center is assumed to be 3 times larger than that of the Inner Galaxy.

from the ESA/M5 proposal

e-ASTROGAM simulation with BoGEMMS

The BoGEMMS simulation framework in the Gamma-ray domain

BoGEMMS (Bologna Geant4 Multi-Mission Simulator) is a Geant4 based customizable simulation framework for the design and optimization of high energy instruments. Used for the scientific performance evaluation of X-ray (Simbol-X, NHXM, XMM-Newton, ATHENA) and Gamma-ray (AGILE, GAMMA-400, GAMMALight, ASTROGAM, e-ASTROGAM) space missions, it provides a fully validated Gamma-ray simulation branch for AGILE-like electron tracking telescopes (*Fioretti+2014*).

V. Fioretti (INAF/IASF Bologna)

eASTROGAM workshop – 01/03/2017

The BoGEMMS simulation framework – verification and validation with AGILESim

- MEGAlib (*Zoglauer+2006*, Compton simulations) vs BoGEMMS:
 - same Geant4 physics list and cuts
 - simulation tests give consistent results
- e-ASTROGAM mass model for M5:

- e-ASTROGAM simulation analysis:
 - Tracker DSSD energy threshold = 15 keV
 - Calorimeter energy threshold = 30 keV
 - Analogic readout applied
 - Cluster reconstruction and baricentered position applied

e-ASTROGAM BoGEMMS simulation – pair production analysis

e-ASTROGAM event reconstruction

V. Fioretti (INAF/IASF Bologna)

e-ASTROGAM event reconstruction

- We are working on finding the best "trigger criteria" for the selection of Gamma-rays interacting with e-ASTROGAM
- These "trigger criteria" are providing also multi criteria section parameters for Neural Network training

Credits: A. Bulgarelli

e-ASTROGAM Kalman filtering

V. Fioretti (INAF/IASF Bologna)

e-ASTROGAM Kalman filtering for position reconstruction

Each track has its own state:

- It is confirmed only if associated with a suitable number of hits
- Only confirmed tracks are considered to reconstruct the event

Measurements that are not associated with tracks are used to create new tracks or to split tracks: the algorithm keeps **multiple hypothesis** about the particle trajectories

Credits: A. Aboudan

The eASTROGAM Point Spread Function

V. Fioretti (INAF/IASF Bologna)

The angular resolution of e-ASTROGAM in the pair production regime is computed using the 68% containment radius of a single King profile fit.

eASTROGAM workshop - 01/03/2017

e-ASTROGAM linear polarisation in the pair regime: first tests

General procedure:

- selection of only pair production events from BoGEMMs
- Kalman filter is used to reconstruct the photon direction and the e-/e+ track direction
- Only photons within 68% containment radius are taken
- the azimuthal angle in computed in the photon frame

Simulation set-up:

- Energy = 100 MeV
- $\theta = 30 \text{ deg.}$
- φ = 225 deg.
- Polarization angle = 20 deg.

Results: still no significant results, but the activity is in progress (need for more statistics)

In collaboration with D. Bernard and F. Longo

Without polarisation, two peaks appear at about +/- 50 deg. This is a bias of the primary photon azimuthal direction in the tracker system of reference. If θ =30, ϕ =0 is used as primary direction, the peaks in the omega distribution appear at 0 and +/- 90 deg.

e-ASTROGAM linear polarisation in the pair regime: Polarisation = 20 deg.

The no-polarisation curve is subtracted to the polarized simulation and the resulting histogram is fitted by the model $B + A^* \cos(2(x - \text{omega}_0))$

The best fit parameters and the reduced Chi2 are:

• w_0 = 20±19 deg.

Chi2/dof = 94/57

 $A = 11 \pm 7.5$

 $B = 482 \pm 5$

eASTROGAMSim, E = 100 MeV, θ = 30, ϕ = 225, photons, 20POL 450 No Polarization 400 350 300 250 z ₂₀₀ 150 100 50 0└ _100 -50 50 0 100 450 Polarization = 20.0 deg.400 350 300 250 z 200 ŧ 150 100 50 0 -50 50 100 -1000 700 $\omega_0 = 19.62 + /-19.3$, A = 11.42 /-7.5, B = 482.53 + /-5.4 600 Chi-Squared/dof = 94.23/57.0 500 400 300 Z 200 100 0 -100-50 0 50 100 -100 ω [deg.]

V. Fioretti (INAF/IASF Bologna)

eASTROGAM workshop – 01/03/2017

the e-ASTROGAM scientific pipeline 2.0

The optimization of the full simulation and data reduction chain is in progress to improve the e-ASTROGAM sensitivity.

- BoGEMMS simulation:
 - ability to discriminate between Compton and Pair production events to train the event reconstruction
 - statistics improvements
 - physics debugging (it never ends!)
 - linear polarisation evaluation
- Event reconstruction:
 - classification of events in different energy channels and Compton/pair discrimination using multi-variate analysis
 - event reconstruction algorithm optimization (e.g. neural networks/BDT/pattern recognition) for each event class
 - optimized Gamma-ray/background discrimination
- Kalman filter:
 - code parameterisation in terms of detector geometry/tracking algorithm
 - release of a C++ code (currently in Matlab)
 - algorithm optimisation and validation