

Isabelle Grenier AIM, Université Paris Diderot & CEA Saclay with the help of the Fermi LAT Collaboration

Fermi Bubbles

extent at low latitudes?

γ-ray properties

Significance of integrated residual, E = 10.0 - 500.0 GeV

4*ckermann+14*

9 4.2 yr of Fermi-LAT data > 100 MeV

 \bullet L_{0.1-500 GeV} = (44 ±0.1^{+2.4}_{-0.9}) 10³⁷ erg/s

index -1.87±0.02^{+0.14}_{-0.17} above 1 GeV E_{cut} = 113 ± 19 ⁺⁴⁵₋₅₃ GeV

uniform with latitude or intensity

no central jet

extended analysis

- 6.5 yrs of Pass 8 Fermi ultra clean data > 100 MeV
- spectral component analysis & extension to lbl < 10° assuming the same E^{-1.9} spectrum as at high latitude
- o indeed similar spectra below & above 10° (except above 400 GeV ???...)

sharp edges

- edges connect to the ROSAT base (?)
- \odot edge vs. integrated spectrum: softened by only $\Delta\gamma$ = 0.2-0.3 =>
 - CRs injected at shock & diffuse away faster at high energy
 - D(E) $\approx 10^{29.5}$ (E/10 GeV)^{0.48±0.02} cm² s⁻¹ if electrons D(E) \propto (E/10 GeV)^{0.24±0.01} if protons
 - rather uniform edge spectrum despite varying Mach number along the edges => Mach > 5
- favours
 - in-situ acceleration over injection from GC
 - forward rather than termination shock

AGN driven bubbles

- onflated by AGN jets Guo 2012
 - jet ok for location, size, shape, sharp edges
 - jet active for 0.1-0.5 Myr, 1-3 Myr ago
 - requires 10^{55-57} ergs, $\dot{M}_{accr} = 10^{2-4} \, M_{\odot}$
 - smooth brightness => suppressed RT and KH instabilities downstream of the bow shock
 - sharp edges => suppressed CR diffusion across the shock
 - IC or $π^0$ emission ??? if IC $p_e \ll p_{th}$, if $π^0 p_{CR} > p_{th}$ probably
 - pb: 0.3 L_{Edd}(SgrA*) and age too young unless continuous reaccelerating of IC electror 10-5

Zubovas & Nayakshin 2012

- AGN wind
 - spherical expansion, 0.1 c,
 - confined by CMZ
 - 6 Myr
- tidal disruption events

The average spectrum of the Bubbles

association with central warm outflows

- 2 UV absorption lines (HST):
 - WIM 10^4 K gas entrained in a biconical outflow with $v_{out} \sim 900$ km/s, opening angle $\sim 110^\circ$
 - not the hot wind plasma
- UV absorption mapping (HST):
 - v_{GSR} ↓ with z and R_{Gal}
 - not constant E injection but2 bursts at 1000 & 1300 km/s4 and 6 Myr ago
 - or AGN jet constantly active for 5-6 Myr

association with a central hot outflow

- X-ray OVII & OVIII lines
 - \sim 4.5 MK, 10⁻³ cm⁻³ gas,
 - flowing out at 490⁺²³⁰₋₇₇ km/s
 - age of 4.3^{+0.8}_{-1.4} Myr
 - power of 2.3^{+5.1}_{-0.9} 10⁴² erg/s
 - favours accretion-driven event of over Gal. wind

Galactic wind outflow

- continuous E(SNe) injection
 - over 50 Myr, SFR < 0.5-0.7 M⊙/yr</p>
 - haze = synch (3-5 μG) from e- accelerated at TS
 - IC γ rays ok
 - X-ray emission "parachute" outside the CD, 20° beyond the γ-ray edge

- variant by Crocker et al. 2015
 - haze = synch from CR electrons reaccelerated at the reverse shocks, only 300 pc downstream => weak IC emission
 - γ rays: CR nuclei reaccelerated at the reverse shocks & further compressed near the CD
 where dense gas to produce pions

prospects for e-ASTROGAM

- e-ASTROGAM + Fermi
 - + SKA absorption line & RRL surveys
- why so uniform inside & along edges?
 - resolve sub-structures at ~GeV energies
 - search for spectral changes along the edges
- increased level-arm in energy for a better separation of
 - bulge
 - CMZ
 - Bubbles' base
 - GC excess
- still very difficult...
- hard X-ray emission from the shocked gas
- MeV brem from low-energy electrons
- sensitivity for M31 bubbles???

