The MeV extragalactic gamma-ray background

Markus Ackermann

e-ASTROGAM Workshop Padova, 02.03.2017

Extragalactic radiation backgrounds.

- > The universe is **full of radiation backgrounds** from radio to gamma rays.
- Integrated emission of the visible universe in each waveband (after foreground subtractions).

- synchrotron emission from galaxies & galactic cores.
- ???

- synchrotron emission from galaxies & galactic cores.
 - es & galactic thermal emission from stars and dust

???

 possible small contribution from unknown stellar populations (e.g. Pop III stars)

synchrotron emission from galaxies & galactic cores.

nuclei (AGN)

???

possible small contribution from unknown stellar populations (e.g. Pop III stars)

- synchrotron emission from galaxies & galactic cores.
- ???

- thermal emission from stars and dust
- possible small contribution from unknown stellar populations (e.g. Pop III stars)
- accretion disks of active galactic nuclei (AGN)
- non-thermal emission from AGN and normal galaxies
- diffuse contributions from CR, dark matter ??

- synchrotron emission from galaxies & galactic cores.
- ???

- thermal emission from stars and dust
- possible small contribution from unknown stellar populations (e.g. Pop III stars)
- accretion disks of active galactic nuclei (AGN)
- non-thermal emission from AGN and normal galaxies
- diffuse contributions from CR, dark matter ??

Known source populations

Sources too faint to be resolved.

Features of the radiation background components.

- Particularly important for cosmology and particle physics
- Radiation backgrounds are upper limit for photon emission from new physics processes.

Diffuse radiation

- Depends on sensitivity of available instruments
- Derived from surveys and / or deep fields

Resolved source populations

- Constrained by total radiation background minus resolved source emission
- Angular power spectrum of radiation background might help to identify origin

Sources too faint to be resolved.

The extragalactic X-ray and gamma-ray background

Measuring the Spectrum of the Extragalactic Background

Fermi LAT analysis of the isotropic gamma-ray background

Galactic diffuse emission

The isotropic and the total extragalactic background

Intensity that can be resolved into sources depends on:

- the sensitivity of the instrument.
- the exposure of the observation.

- The isotropic γ-ray background depends on the sensitivity to identify sources.
- → Important as an upper limit on diffuse processes.

- The total extragalactic γ-ray background is instrument and observation independent.
- → Useful for comparisons with source population models.

Derivation of the isotropic gamma-ray background.

Derivation of the isotropic gamma-ray background.

Galactic diffuse foreground model.

- > GALPROP code used to produce template maps for diffuse Galactic emission.
 - Baseline model: CR injection/propagation scenario as in Ackermann et al. 2012
- Intensity is derived from fit to LAT data in each energy band.

Evidence from CR for more complex propagation scenarios

A single set of (constant) propagation parameters cannot describe the light elements and B/C data simultaneously.

Galactic foreground studies with e-ASTROGAM

Updated interstellar models, and predictions for Slide from Elena's talk e-ASTROGAM

Comparison of IGRB and EGB measurements above 100 MeV

- > Total EGB = isotropic gamma-ray background + intensity of detected sources
- > Uncertainty from foreground modeling dominates

Understanding the origin of the Extragalactic Background

The origin of the MeV - GeV EGB.

Sources

Blazars

Dominant class of extra-galactic
 GeV / TeV sources.

Radio galaxies

- ~ 30 sources resolved by LAT
- Less luminous but more abundant than Blazars

Star-forming galaxies

- Only few galaxies resolved in GeV band.
- Large number of sources → significant EGB contribution.

GRBs + High-latitude pulsars

Small contributions expected.

Diffuse processes

Intergalactic shocks

Small contribution on the level of few % expected.

Dark matter annihilation

 Potential signal dependent on nature of DM, cross-section and structure of DM distribution.

Interactions of UHE cosmic rays with the EBL

- Strongly dependent on evolution of UHECR sources.
- large contributions possible (above few GeV)

Isotropic Galactic contributions

 Contributions from an extremely large Galactic electron halo / small solar system bodies.

Unresolved Blazars: FSRQ gamma-ray luminosity function.

Ajello et al., ApJ 751, 108, 2012

- LAT resolved FSRQ population spans wide range in redshift and luminosity
- Allows to build gamma-ray luminosity function (GLF) based on LAT data alone
- Luminosity-dependent density evolution (LDDE) fits LAT population best
- Prediction of EGB contribution based on GLF + spectral modeling

Contributions of star-forming galaxies

- > Only 8 galaxies detected by the LAT
- Almost linear correlation between gamma-ray luminosity and tracers of star formation
 - bolometric infrared luminosity
 - 1.4 GHz radio continuum emission
- Detection + upper limits can be used to constrain correlation
- Use gamma-ray / IR luminosity correlation to calculate EGB contribution based on IR luminosity function of galaxies.

Contributions of star-forming galaxies

- Different population models predict different contributions to the EGB.
- Measurement of spectral features in the 10 MeV 200 MeV range would help to constrain these population models.

Source population contributions to the EGB

- Observed extragalactic LAT source populations can account for the EGB intensity.
- > Significant uncertainties in modeling contributions.

Source population contributions to the EGB

- > Observed extragalactic LAT source populations can account for the EGB intensity.
- > Significant uncertainties in modeling contributions.

Spectra of nearby radio galaxies

- > Better spectral modeling of radio galaxy contributions
- Additional radio galaxy detections due to better e-ASTROGAM low-energy sensitivity (compared to Fermi LAT)
- Can give a handle to separate radio galaxy / star-forming galaxy contributions

The extragalactic MeV background

- > EGB contributions in MeV range widely unknown
- > There is room for surprises!

Summary

- Cosmic x-ray and gamma-ray backgrounds have been measured over 9 orders of magnitude in energy.
- > Fermi LAT data enabled the most accurate EGB measurement between 100 MeV and 820 GeV.
- > BLLacs dominate the EGB above a few GeV, while multiple source populations contribute at low energies
- e-ASTROGAM would deliver a significant improvement of the EGB measurement between 0.3 MeV and 3 GeV.
- Better constraints of Galactic foreground would also improve measurement in LAT energy range.
- Potential spectral features in the MeV range would give important clues on the origin of the EGB.
- > Better determination of source population spectra improves modeling their contribution.

Backup

Derivation of the isotropic gamma-ray background.

Derivation of the isotropic gamma-ray background.

Backgrounds in the GeV regime

- In Fermi LAT energy range up to 10⁶ times higher charged particle backgrounds than EGB intensity
- Lots of effort went into modeling and reducing CR background contaminations

Backgrounds in the MeV regime

- Ratio between cosmic photons and backgrounds improves towards lower energies
- Still efficient rejection of charged particle backgrounds necessary.

Cosmic-ray contamination in high-purity event class

> Effective contamination from mis-classified CRs in comparison to IGRB intensity

EGB measurement and angular resolution

