Phase II Physics Discussion

Meeting Introduction

Florian Bernlochner Anze Zupanc Guglielmo de Nardo

Meeting Scope

Discuss possible physics measurements for Phase II data taking

Main goal of such measurements:

- Show that we can carry out physics with Belle II
 - Should be simple enough to have a quick turn-around-time
 - \circ Ideally provides a measurement of a branching fraction we can convert into $N_{\it BR}$
 - Highlights performance aspect
 - Test all the tools and chains to show we are ready for Phase III
- Unclear at this point in time on what √s we will run and how much data will be recorded
 - $0 L = O(20 + -20 fb^{-1})$
 - Likely driven by accelerator and detector crews need to commission the beam and detector

Proposed measurements: inclusive semileptonic BFs

• Inclusive SL BF to light leptons is large (~ 20%); not much data needed to carry out a reasonable measurement.

√s	Measurement
Y(4S)	$BF(B{ o}Xl\pmb{\nu})$
Y(5S)	$BF(B_s \rightarrow X l \nu)$
Y(6S)	$BF(B_s \rightarrow X l \nu)$

Measurement of the inclusive semileptonic *BF* at $\sqrt{s} = Y(4S)$

Inclusive SL BF to light leptons is large (~ 20%)

- → Not much lumi needed to carry out a reasonable measurement
- → E.g. CLEO measurement used 9.4/fb plus 4.5/fb off-resonance data

https://arxiv.org/pdf/hep-ex/0403053.pdf

- Many aspects of detector performance needs to be understood well, e.g.
 - Performance of Lepton ID and mis-identification efficiencies crucial
 - \circ Efficiency of selection cuts, in case one wants to revert the measurement to a $N_{\rm \tiny RR}$

Proposed Analysis strategy (based on hep-ex/0403053)

Use semileptonic double tagging to select signal events

- Select events with a high-momentum (tag) lepton with e.g. p_i > 1.4 GeV/c
- In events with tags, search for accompanying (signal) electrons or muons with a minimum momentum of e.g. 0.6 GeV/c
 - Neglecting Mixing this produces three categories of events:

Category
Primary Events
Opposite <i>B</i> secondary Events
Same <i>B</i> secondary Events

$$l+ \longleftarrow B$$

$$\overline{B} \longrightarrow l-$$

$$l+ \longleftarrow B$$

$$D \longrightarrow l+$$

$$l+ \longleftarrow B \longrightarrow D$$

Reduction of same B Secondary Events

Primary and secondary decay spectra

The measured spectra are connected to the differential branching fractions of primary and secondary decays as:

Primary decays (signal) Secondary decays (bkg)
$$\frac{dN(\ell^{\pm}e^{\mp})}{dp} = N_{\ell} \, \eta(p) \, \epsilon(p) \left[\frac{d\mathcal{B}(b)}{dp} \, (1-\chi) \, + \, \frac{d\mathcal{B}(c)^{oppB}}{dp} \, \chi \right]$$

$$\frac{dN(\ell^{\pm}e^{\pm})}{dp} = N_{\ell} \, \eta(p) \left[\frac{d\mathcal{B}(b)}{dp} \, \chi + \frac{d\mathcal{B}(c)^{oppB}}{dp} \, (1-\chi) \right]$$
 Factor that accounts for mixing: $\chi = f_{00} \, \chi_d$

Primary and secondary decays

Other backgrounds

Important Ingredients

Need to have a good understanding of several performance related issues

- Lepton PID Performance and Mis-ID
 - Need data-driven auxiliary measurements to validate performance
 - Lepton mis-ID rates of pions, kaons, and protons

$$K_S \to \pi^+\pi^ D^* \to D \to K\pi$$
 $\Lambda \to p\pi$

- Electron ID and track-selection performance could be studied with radiative Bhabha events
 - Could be done via 'embedding' into generic MC events or an orthogonal data sample of BB events
 - Or by correcting the event topology, angular distributions, etc. in another fashion

Conversion of measured yields in BFs

$$\frac{d\mathcal{B}(b)}{dp} = \frac{1}{\left(1 - \left[\Delta(p) + 1\right]\chi\right)} \frac{1}{N_{\ell} \eta(p)} \left[\frac{\left[1 - \chi \Delta(p)\right]}{\epsilon(p)} \frac{dN(\ell^{\pm}e^{\mp})}{dp} - \chi \Delta(p) \frac{dN(\ell^{\pm}e^{\pm})}{dp} \right]$$

$$\frac{d\mathcal{B}(c)}{dp} = \frac{1}{\left(1 - \left[\Delta(p) + 1\right]\chi\right)} \frac{1}{N_{\ell}\eta(p)} \left[\frac{\chi}{\epsilon(p)} \frac{dN(\ell^{\pm}e^{\mp})}{dp} - (1 - \chi) \frac{dN(\ell^{\pm}e^{\pm})}{dp} \right]$$

Normalization

The CLEO measurement extracted the BF by counting the number of tags

- I.e. how many events have a tag lepton with or without a second signal lepton
 - o BF: Fraction of tagged events that has a signal side lepton from a primary decay

$$\frac{d\mathcal{B}(b)}{dp} = \frac{1}{(1 - \left[\Delta(p) + 1\right]\chi)} \frac{1}{N_{\ell} \eta(p)} \left[\frac{[1 - \chi \Delta(p)]}{\epsilon(p)} \frac{dN(\ell^{\pm}e^{\mp})}{dp} - \chi \Delta(p) \frac{dN(\ell^{\pm}e^{\pm})}{dp} \right]$$
Number of tags

 To convert this information into the number of BB-pairs, we would need to determine (from simulation) the efficiency of selecting a tag

0

Measurement of the inclusive semileptonic BF at $\sqrt{s} = Y(5S)$ or Y(6S)

Separation of $B\overline{B}$ and $B_s\overline{B}_s$ contributions important; tag Ds meson

https://arxiv.org/pdf/1212.6400.pdf

$$\mathcal{R}_{\ell} = rac{\mathcal{N}_{D_s^+\ell^+}}{\mathcal{N}_{D_s}} = rac{N_{ ext{primary}}}{N_{D_s}} \cdot rac{\epsilon_{K^+K^-\pi^+}(D_s)}{\epsilon_{K^+K^-\pi^+}(D_s^+\ell^+)} \,.$$

BF determination

$$\mathcal{B}(B_s \to X \ell \nu) = \frac{[\mathcal{N}_{D_s}(B_s) + \mathcal{N}_{D_s}(B)] \cdot \mathcal{R}_{\ell} - \mathcal{N}_{D_s^+\ell^+}(B)}{\chi_s \cdot \mathcal{N}_{D_s}(B_s)}.$$

BF obtained by combining measured ratio with external measurements

alue alue	$ \Delta \mathcal{B}/\mathcal{B} $ [%]
36.1 ± 3.2 % [77]	0.8
$38.5 \pm 4.2] \% [77]$	0.6
$[9.9 \pm 3.0] \%$	2.4
$93 \pm 25] \%$	4.4
7.9 ± 1.4] %	2.2
10.3 ± 2.1] %	1.7
1.5 ± 0.8 % [114]	1.1
1.1 ± 0.4 %	0.9
$[0.33 \pm 0.28] \%$	0.4
$[0.99 \pm 0.28]$ %	0.1
38.1 ± 3.4] %	0.1
$[3.7 \pm 1.6]$ %	0.1
5.5 ± 1.6 %	0.0
$5.9 \pm 7.8]\% [77]$	0.1
11.6 ± 12.1] % [77]	0.2
0.2 ± 6.8 % [77]	0.0
$.771 \pm 0.008$	0.1
$.500 \pm 0.001$	0.2
	66.1 ± 3.2] % [77] 68.5 ± 4.2] % [77] 9.9 ± 3.0] % 7.9 ± 1.4] % [77] 7.9 ± 1.4] % [77] 7.9 ± 1.4] % [77]

$$\mathcal{N}_{D_s}(B_s)/N_{b\bar{b}} = 2 \cdot f_s \cdot \mathcal{B}(B_s \to D_s X),$$

$$\mathcal{N}_{D_s}(B)/N_{b\bar{b}} = 2 \cdot f_d \cdot \mathcal{B}(B^0 \to D_s X) + 2 \cdot f_u \cdot \mathcal{B}(B^+ \to D_s X)$$

$$\begin{split} \mathcal{N}_{D_{a}^{+}\ell^{-}}(B)/N_{bb}^{-} &= \\ & 2 \cdot \frac{f_{\ell}}{f_{\nu,d}} \cdot \left[F_{BB} + F_{B^{+}B^{+}} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot (F_{BB,n}^{\prime} + F_{B^{+}B^{+}n}^{\prime}) + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \\ & \left\{ \chi_{d}^{(-)} \cdot \mathcal{B}(B^{0} \to D_{s}^{+}X) + \left(1 - \chi_{d}^{(-)}\right) \cdot \mathcal{B}(B^{0} \to D_{s}^{-}X) \right\} \cdot \mathcal{B}(B^{0} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\ell}}{f_{\nu,d}} \cdot \left[F_{B^{+}B} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{B^{+}B}^{\prime}) \right] \cdot \\ & \left\{ \chi_{d}^{(+)} \cdot \mathcal{B}(B^{0} \to D_{s}^{+}X) + \left(1 - \chi_{d}^{(+)}\right) \cdot \mathcal{B}(B^{0} \to D_{s}^{-}X) \right\} \cdot \mathcal{B}(B^{0} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime})) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d} - F_{2}) \cdot (1 - F_{3}^{\prime}) \right] \cdot \mathcal{B}(B^{+} \to D_{s}^{-}X) \cdot \mathcal{B}(B^{+} \to X\ell^{+}\nu_{\ell}) \\ & + 2 \cdot \frac{f_{\nu}}{f_{\nu,d}} \cdot \left[F_{2} + \frac{1}{3} (f_{\nu,d} - F_{2}) \cdot F_{3}^{\prime} + (f_{\nu,d}$$

Which groups would be interested in contributing?

Ideally we would tackle this as a group effort; could be the first SL Belle II result

- Group work will ensure quick turn-around-time once we have data
- Preparation needs to start in early 2017
 - Need to optimize selection and implement auxiliary measurements to cross check PID performance and other aspects
 - Auxiliary measurements will be useful beyond the measurement of the inclusive BF and the
 SL working group
 - Good preparation to ensure physics readyness for Phase III
- Y(4S) data is fairly straightforward; Y(5S) & Y(6S) measurements a bit more involved as one has to deal with BB backgrounds
 - Factor of 2-4 less data than CLEO still would make a reasonable Y(4S) measurement
 - Off-resonance data would be nice to have, but could also subtract continuum with MC
 - Can go beyond kinematic endpoint of lepton spectrum to validate subtraction or derive correction function