

1

Status of $B \rightarrow K^{(*)}vv$

6th Belle II Italian collaboration meeting Rome, December 14th, 2016

C. Cecchi ^[1], G. De Nardo^[2], <u>E. Manoni^[1]</u>, M. Merola^[3]

[1] University di Perugia & INFN Perugia[2] University "Federico II" di Napoli & INFN Napoli[3] INFN Napoli

Outline

- Theoretical motivation and experimental status
- MC studies with MC5:
 - reconstruction and selection
 - UL estimation @ 500 fb⁻¹
 - first look at bkg characterization
 - comparison with BaBar distributions
- Next steps

Theoretical motivation and experimental status

- $B \rightarrow K^{(*)} \nu \nu$ is a potential probe for NP
 - FCNC suppressed in the SM
 - possible non-standard Z-couplings and new sources of missing energy in some NP scenarios
- Experimental searches from B factories:
 - ~ a factor of 4-5 between exp and SM predictions for K^+ , K^{*+} , and K^{*0} channels

channel	Exp	Theo ^[3]
B ⁰ →K ^{*0} νν	< 5.5 10 ^{-5 [1]}	9.19 ± 0.86 ± 0.50
B+→K*+νν	< 4.0 10 ^{-5 [1]}	9.91 ± 0.93 ± 0.54
$B^0 \rightarrow K^0 \nu \nu$	< 4.9 10 ^{-5 [2]}	1.85 ± 0.20 ± 0.20
B+→K⁺νν	< 1.6 10 ^{-5 [2]}	3.98 ± 0.43 ± 0.19

• If SM holds, BF measurement with full statistics feasible with ~ 20% accuracy (backof-the-envelop calculation detailed in BELLE2-MEMO-2016-008)

Studies on MC5: samples & reconstruction strategy

- SIGNAL SAMPLES:
 - ~1M events for BGx1 configs (private production with release-00-05-03)
 - generated and reconstructed channels: $K^{*+} \rightarrow K^{+}\pi^{0}$, $K_{S}\pi^{+}$
- GENERIC MC SAMPLES: (MC5 production, release-00-05-03) corresponding to 500 fb⁻¹
- Reconstruction strategy:
 - Hadronic tag side reconstructed with FEI algorithm
 - dedicated clustering cleaning and PID selection wrt official Belle2 FEI (see back-up for details)
 - B_{tag} signal probability (goodness of hadronic B reconstruction) > 1%
 - Number of tracks not associated to B_{sig} nor to B_{tag} (# extra tracks) = 0
 - Best Y candidate selected according to highest B_{tag} signal probability and K* with smallest $|m_{K^{\star},reco}\text{-}m_{K^{\star},PDG}|$
- DISCLAIMER: a bug was found in one of the .dec files describing generic B decays (overestimation of some BF), no reweighing has been applied in this study

Selection strategy

- Selection strategy:
 - Apply pre-selection cuts on B_{tag} kinematics (m_{BC}, ΔE)
 - Optimize cuts using S/sqrt(B) as figure of merit on: $R_2,\,m_{KS},\,m_{K^\star}$
 - Apply cuts on $\cos^*\theta_{\text{miss}}$, $cp^*_{\text{miss}} + E^*_{\text{miss}}$ with $P^*_{\text{MISS}} = P^*_{\text{Y4S}} - P^*_{\text{Btag}} - P^*_{\text{K}^*}$
- Define a signal window on the extra energy deposited in the calorimeter, E_{ECL}, and evaluate signal efficiency and expected number of background events
- Estimate Upper Limit @ 90% C.L. with Bayesian approach

Cut	$K_{S}\pi^{+}$ channel	$K^{\scriptscriptstyle +}\pi^0$ channel
m _{BC}	[5.27,5.29] GeV/c ²	[5.27,5.29] GeV/c ²
ΔΕ	[-0.08,0.05] GeV	[-0.08,0.05] GeV
R ₂	<0.3	<0.3
m _{KS}	[0.5476,0.4475] GeV/c ²	
m _{K*}	[0.842,0.942] GeV/c ²	[0.802,0.982] GeV/c ²
$\cos\theta^*$ miss	[-0.85,0.85]	[-0.85,0.85]
cp* _{miss} + E* _{miss}	> 4.5 GeV	> 4.5 GeV
E _{ECL}	<0.3 GeV	<0.3 GeV

	Current estimation	BaBar 2008 cut-and-count ^[*]	BELLE 2013 E _{extra} fit [PRD RC 87, 111103(2013)]	
Lumi (fb ⁻¹)	500	413	711	
expected	$K_{S}\pi^{+}:31 \pm 6,$	$K_{S}\pi^{+}: 9 \pm 5,$		
background yield	$K^{+}\pi^{0}:609 \pm 25$	$K^{+}\pi^{0}: 19 \pm 9$		
signal efficiency	$K_{S}\pi^{+}$:1.1 ± 0.1,	K _s π ⁺ : ~0.7,	1.47	
(10 ⁻⁴)	$K^{+}\pi^{0}$: 4.6 ± 0.2	K ⁺ π ⁰ : ~1		

- Statistical errors only
- Main differences between this and BaBar analysis:
 - tighter selection and reconstruction requirements (e.g. K_s and K* reconstruction)
 - no contamination from machine background in BaBar case

^[*] NN fit results published for 2008 BaBar analysis (PRD 78, 072007(2008)), cut-and-count analysis in my PHD thesis

Upper limit estimation (I)

- Use Bayesian approach to estimate UL @ 90% C.L. with 500 fb
- Inputs:
 - Uncertainties on BB yield at 1% level
 - Statistical uncertainties on signal efficiency and background estimation from this MC study
 - Systematic uncertainties on signal efficiency and background estimation from BaBar cut-and-count analysis

	Cut and Count				
K^* mode	$K^+\pi^0$	$K^0_{_S}\pi^+$	$K^+\pi^-$		
		Signal eff	iciency (%)		
MC statistics	3.5	4.1	3.1		
Selection variables	3.4	7.0	6.0		
Tracking	0.3	1.0	0.7		
K_{s}^{0} reconstruction	-	2.5	-		
π^0 reconstruction	3.0	-	—		
Particle ID	1.5	-	1.6		
Model dependence	6.7	6.8	7.2		
Total	8.9	11.0	10.0		
	Background yield (even				
$N_{ m bkg}$	9.0	4.1	2.5		

- Correlation on systematic uncertainties among the two channels accounted for
- Relative systematic uncertainties on expected bkg yield at 50% level

- At 500 fb⁻¹:
 - stat errors only: $BF(B \rightarrow K^{*+}vv) < 3.4 \times 10^{-4}$
 - stat & syst errors: $BF(B \rightarrow K^{*+}vv) < 4.4 \times 10^{-4}$
- Babar 2008 cut-and-count result (413 fb⁻¹): BF(B \rightarrow K^{*+}vv) < 3.3 x 10⁻⁴
- Room for improvements:
 - refine K_S and K* reconstruction
 - refine background rejection (continuum suppression tools)
 - very conservative systematic error in background estimation applied here \rightarrow fit to extract signal yield to be implemented

First look at background characterization

- Available info at ntuple-level: reconstructed B and D decay mode (error at reconstruction level)
- Missing: mc truth info on generated decay chain (available for the next iteration of the analysis)
- Consider $K^{*+} \rightarrow K^{+} \pi^{0}$ only (~600 evts surviving the final selection)

Comparison of variable shapes after vent selection

- Will compare distribution for the $K^{*+} \rightarrow K^{+}\pi^{0}$ channel for some of the variables used in the selection with the following analysis:
 - BaBar 2013 (429 fb⁻¹, PRD RC 87, 111103(2013), for m_{BC} and ΔE distributions: ~ similar hadronic B reconstruction wrt Belle2 FEI
 - BaBar 2008 (413 fb⁻¹) cut-and-count for other vars, similar selection with some known differences:
 - much lower number of modes reconstructed in the tag side (~ factor of 20 lower

hadronic reconstruction efficiency)

- no machine bkg
- tighter requirements on K*,

K_s reconstruction, and continuum rejection

Channel	Selection Criteria
$K^{*+} \rightarrow K^+ \pi^0$	$0.03 < R_2 < 0.70$
	$0.004 < \cos \theta^*_{B,\mathrm{T}} < 0.84$
	$0.84 < m_{K^*} < 0.95 \text{ GeV}/c^2$
	$-0.78 < \cos\theta^*_{\rm miss} < 0.93$
$K^{*+} \to K^0_s \pi^+$	$0.0 < R_2 < 0.49$
	$0.0 < \cos \theta^*_{B,\mathrm{T}} < 0.87$
	$0.86 < m_{K^*} < 0.95 \text{ GeV}/c^2$
	$0.49 < m_{K_s^0} < 0.50 \text{ GeV}/c^2$
	$-0.82 < \cos \theta^*_{\rm miss} < 0.82$

$$\begin{split} E^*_{\rm miss} + p^*_{\rm miss} > \ 4.5 \, {\rm GeV} \,, \\ 0 \leq E_{\rm extra} < \ 0.3 \, {\rm GeV}. \end{split}$$

MBC before selection

- Selection applied:
 - B_{tag} reconstruction, no requirements on the signal side for BaBar2013
 - $B_{tag} + K^{*+} \rightarrow K^{+} \pi^{0}$ reconstruction (pag 3) for Belle2
- Signal shape: we have lowest tails and sharper peak (due to requirements on K* reconstruction)
- Generic shape: we have a larger amount of continuum wrt generic

december 14th, 2016

EECL before selection

Selection: in both cases, just cuts at reconstruction level are applied (different B_{tag} reconstruction and K* selection)

Larger peak at low
 E_{ECL} values,
 probably due to
 machine bkg

december 14th, 2016

EECL after selection (but Eextra cut) (I)

Selection: in both cases, full selection but E_{ECL} cut applied (pag 5 for Belle2 and page 10 for BaBar 2008)

 \bullet

More evident difference at low E_{ECL} values in the generic sample, probably due to machine bkg

EECL after selection (but Eextra cut) (II)

 E_{ECL} after selection

BaBar 2008 Belle2

- Selection: in both
 cases, full selection
 but E_{ECL} cut applied
 (pag 5 for Belle2
 and page 10 for
 BaBar 2008)
- Very similar signal shapes

- Cut-And-Count analysis of Belle2 generic MC5 + private signal MC production performed on $B^+ \rightarrow K^{*+}vv$
 - preselection on tag side variables
 - cut optimization for continuum rejection and strange meson masses
 - loose selection on missing angle, sum of missing energy and momentum and $\rm E_{ECL}$
- Selection efficiencies and expected background yields estimated, Upper limit estimation at 500 fb⁻¹ ~ compatible with BaBar cut-and-count
- First look at bkg characterization: modes with high π multiplicity dominates, need additional mctruth info to complete the study

- Comparison of selection variables distributions with BaBar analyses
 - known differences in reconstruction and may explain some discrepancy
 - cp*miss + E*miss distribution needs a closer look
 - comparison with BGx0.0 would be helpful
- Next steps, on MC7:
 - tune selection, e.g. using multivariate tools for continuum rejection, $\,K_S$ and K^* reconstruction
 - complete bkg characterization and comparison with BaBar and Belle
 - perform signal yield extraction with 1-DIM (E_{extra}) or 2-DIM (E_{extra} vs cp*_{miss}+E*_{miss})
 - extrapolate expected UL at higher luminosities

EXTRA SLIDES

Efficiencies in 10^{-4} units for $K^{*+} \rightarrow K^{+}\pi^{\circ}$ mode

cut/sample	signal MC	B+B-	B0B0bar	ccbar	uubar	ddbar	ssbar
m _{BC}	15.6 +/-0.4	2.570 +/- 0.001	0.640 +/- 0.005	2.027 +/- 0.006	28.282 +/- 0.006	28.847 +/-0.012	23.14 +/-0.011
ΔE	13.2 +/-0.4	2.219 +/- 0.001	0.517 +/- 0.004	1.605 +/- 0.005	22.539 +/- 0.005	23.010 +/-0.011	17.95 +/- 0.01
R2	9.8 +/-0.3	1.925 +/- 0.0008	0.455 +/- 0.004	0.418 +/- 0.003	0.493 +/- 0.002	0.506 +/- 0.005	0.386 +/- 0.005
m _{K*}	6.3 +/-0.3	0.5800 +/- 0.0005	0.176 +/- 0.002	0.181 +/- 0.002	0.184 +/- 0.002	0.193 +/- 0.003	0.148 +/- 0.003
$\cos\! heta^{*}_{miss}$	5.9 +/-0.2	0.4695 +/- 0.0004	0.145 +/- 0.002	0.150 +/- 0.002	0.1458 +/- 0.0002	0.155 +/- 0.003	0.126 +/- 0.003
cp* _{miss} + E* _{miss}	5.5 +/-0.2	0.02750 +/- 0.0001	0.0061 +/- 0.0005	0.0037 +/- 0.0002	0.0029 +/- 0.0002	0.0037 +/- 0.0004	0.005 +/- 0.0005
E _{ECL}	4.6 +/-0.2	0.012608 +/- 0.00007	0.0031 +/- 0.0003	0.0009 +/- 0.0002	0.0009 +/- 0.0001	0.0009 +/- 0.0002	0.0028 +/- 0.0003
N _{exp, bkg}		337 +/- 18	88 +/- 9	62 +/- 8	71 +/- 8	18 +/- 4	33 +/- 6

Efficiencies in 10^{-4} units for $K^{*+} \rightarrow K_5 \pi^+ \mod e$

cut/sample	signal MC	B+B-	B0B0bar	ccbar	uubar	ddbar	ssbar
m _{BC}	4.61 +/-0.21	10.876 +/- 0.006	0.296 +/- 0.003	1.272 +/- 0.004	1.654 +/- 0.005	1.642	1.504 +/- 0.009
ΔE	3.94 +/-0.20	9.443 +/- 0.006	0.241 +/- 0.003	1.002 +/- 0.004	1.306 +/- 0.004	1.300 +/- 0.008	1.162 +/- 0.008
R2	2.76 +/-0.17	8.310 +/- 0.006	0.218 +/- 0.003	0.247 +/- 0.002	0.282 +/- 0.002	0.281 +/- 0.004	0.222 +/- 0.003
m _{KS}	2.16 +/-0.15	4.683 +/- 0.005	0.123 +/- 0.002	0.137 +/- 0.001	0.151 +/- 0.001	0.154 +/- 0.003	0.123 +/- 0.003
m _K ∗	1.31 +/-0.11	0.029 +/- 0.001	0.0105 +/- 0.0006	0.0010 +/- 0.0004	0.0100 +/- 0.0004	0.0103 +/- 0.0007	0.0008 +/- 0.0007
$\cos\! heta^{\star}_{miss}$	1.28 +/-0.11	0.0229 +/- 0.0009	0.0008 +/- 0.0005	0.0008 +/- 0.0004	0.0008 +/- 0.0003	0.0008 +/- 0.0006	0.0007 +/- 0.0006
cp* _{miss} + E* _{miss}	1.19 +/-0.11	0.0013 +/- 0.0002	0.0003 +/- 0.0001	0.00012 +/- 0.00004	0.00025 +/- 0.00006	0.0002 +/- 0.0001	0.0003 +/- 0.0001
E _{ECL}	1.10 +/-0.10	0.0005 +/- 0.0001	0.0002 +/- 0.00009	0.00003 +/- 0.00002	0.00007 +/- 0.00003	0.00010 +/- 0.00007	0.00010 +/- 0.00007
N _{exp, bkg}		13 +/- 4	6.0 +/- 2.4	2.0 +/- 1.4	6.0 +/- 2.4	2.0 +/- 1.4	2.0 +/- 1.4

december 14th, 2016

Cluster selection & PID

PID selection

- Likelihood function based on E/p (energy loss in the calorimeter divided by particle momentum) and dE/dx (energy loss in the tracking system)
- Cut on the LR = L(particle) / (L(e) + L(mu) + L(pi))

Photon selection

cluster cleaning (to reject photons from beam background) with cuts on photon energy, cluster timing, E9/E25 and minimum distance between the cluster and tracks in the event (separately in forward, barrel and backward detector regions)

R2 before selection

- Selection: in both cases, just cuts at reconstruction level are applied (different B_{tag} reconstruction and K* selection)
- Signal shape: our distribution peaked at slightly low values, may depend on tag side modes (?)

ΔE before selection

- Selection applied:
 - B_{tag} reconstruction, no requirements on the signal side for BaBar2013
 - $B_{tag} + K^{*+} \rightarrow K^{+}\pi^{0}$ reconstruction (pag 3) for Belle2
- Different structure probably due to different mode-bymode cuts at reconstruction level

