Belle (II) physics analysis at Trieste

L.Bosisio, B.Gobbo, <u>I. Komarov</u>, C. La Licata, L. Lanceri, D. Tonelli, L. Vitale

Disclaimer

This is a start-up/contentless talk. Its purpose is

- To let you know that we have recently formed a small team which is exploring a few analysis options
- To get your feedback

Us

Currently **one staff scientist** and **two postdocs** are interesting in doing analysis.

Diego Tonelli

 Many measurements of CP violation in CDF and LHCb

Chiara La Licata

٠

Electro-weak physics at CMS

Ilya Komarov

٠

Heavy-flavour physics at LHCb

We expect that other group members now busy with construction/commissioning will contribute soon

Our plans

We lack $e^+e^-\rightarrow Y(4S)$ analysis background and Belle II physics-grade data are not yet there. We thought we could learn a lot by pursuing an analysis of Belle data with B2BII: need a topic that is

• Interesting physics-wise.

- Potentially leading to a competitive result with respect to Babar and LHCb current and future results.
- Commensurate with our timing and personpower constraints (2 postdocs) and compatible with Belle's needs.
- Promising and attractive in Belle II perspective.

Hadronic B decays

- An essential sources of our knowledge of CP violation in quarks, since they give direct access to CKM parameters α and γ .
- Most of the simple things are done/in progress, but a number of interesting channels remain to be fully exploited.
- For modes with neutrals in the final state, Belle(II) reach is either unique or competitive to LHCb.
- Belle seem to be lagging behind on some channels w.r.t. to what done by Babar.
- Some of us have a long standing interest and background on these modes.

The first candidate: $B^+ \rightarrow K^{*+} \rho^0$

Motivation: experimental test of B→VV helicity structure Phys.Rev.D78:094001,2008 Phys.Rev.Lett.96:141801,2006

Final states: $\pi^+ K^0 \pi^+ \pi^-$ and $\pi^0 K^+ \pi^+ \pi^-$

Observables: Br, A_{CP} and f_{L} (partial angular analysis needed - integrated over ϕ)

Experimental challenges:

- Low BF (~10⁻⁵)
- Wide ρ^0 partially overlapping with f₀(980)

$B \rightarrow K^* \rho$. Current status

Table of measured branching fractions in different experiments

			BaBar			Belle					
	stat (%)	syst (%)	N _{sig}	Data	f _L , A _{CP}	stat (%)	syst (%)	N _{sig}	Data	f _L , A _{CP}	
K*+ ρ ⁰	22 arXiv	9 v:1012.40	152 44v1	100%	+						
K*0 ρ+	18 arXiv:	16 hep-ex/06	194 507057	50%	+	19	13 arXiv:hep	85 p-ex/0505	30% ₀₃₉	+	
K*+ ρ-	22 13 167 arXiv:1112.3896		100%	÷							
K*0 ρ ⁰	12 arx:	14 iv:1112.3	376 ⁸⁹⁶	100%	Ŧ	38	40 arXiv:0	78 905.07631	85% 2	-	

Note: No competition from LHCb, except for $B^0 \rightarrow K^{*0} \rho^0$ (right now LHCb has no results here, but potentially they have better performance).

$B \rightarrow K^* \rho$. Prospects

Table of measured branching fractions in different experiments. Projected values are shown in green

			BaBar	•			Belle II one				
	stat (%)	syst (%)	N _{sig}	Data	f _L , A _{CP}	stat (%)	syst (%)	N _{sig}	Data	f _L , A _{CP}	stat (%)
K*+ ρ ⁰	22 ar	9 xiv:101		100%	+	16			100%		7
K* ⁰ ρ+				50%	÷	19 arXiv	13 :hep-ex/	85 0505039	30%	+	
K*+ ρ-	22	13 arXiv:11		100%	÷	17			100%		8
K*0 ρ ⁰	12	1 4 arXiv:11		100%	÷		24-40 v:0905.0		85%	-	4

Sounds like there might be potential for doing useful physics here.

Possible extensions of $B^+ \rightarrow K^{*+} \rho^0$ analysis: inclusion of other K*p modes and full angular analysis.

$B^+ \rightarrow (D \rightarrow h_{K/\pi} h_{K/\pi} \pi^0) K/\pi$

Motivation: sensitivity to ϕ_3 through *CP* violating observables.

Final states: final states of two types: ADS ($K\pi\pi^0 + K/\pi$) and quasi-GLW ($KK\pi^0 + K/\pi$ and $\pi\pi\pi^0 + K/\pi$). ADS part is already covered, so we aim to focus on qGLW part.

Observables: ratio of suppressed to favoured branching fractions ($R_{DK/D\pi}$) and direct *CP* asymmetry

Attractive because it appears rather straightforward, and the fact that Belle has already published the ADS results could offer a valuable consistency check.

On the other hand, the relevance of qGLW results alone might not obviously justify the effort and/or someone might already be working at these.

$B^+ \rightarrow (D \rightarrow 3 \text{ body}) \text{ K/}\pi$

Table of measured direct asymmetry in different experiments

Projected values are shown in green

	LHCb 3fb ⁻¹ of pp collisions. (2011+2012)		Bal 70% c	Bar of data	Bel 100% o	Belle II One year	
	Acp	N _{sig}	Acp	N _{sig}	A _{CP}	N _{sig}	Acp
$(D \rightarrow K \pi \pi^0) K^{\text{-}(+)}$	-0.2±0.27± ±0.04	1478 (1442)			0.41±0.30± ±0.05	3844	±0.13(stat)
$(D o \pi \pi \pi^0)K^{\text{-}(+)}$	0.054±0.091± ±0.011	139(125)	-0.02±0.15± ±0.03	~85(~85)	±0.091 (stat)		±0.04(stat)
(D→ KKπ ⁰)K- ⁽⁺⁾	0.30±0.20± ±0.02	49(27)	_	-	±0.2 (sta		±0.08(stat)

LHCb, full Run I data [arXiv:1504.05442]

BaBar, 70% of data [arXiv:0703037v1] Belle, 100% of data [arXiv:1310.1741v2]

Note : This is an analysis that measures many observables, we only show A_{CP} to compare sensitivities across experiments.

$B^+ \rightarrow (D \rightarrow 3 \text{ body}) \text{ K/}\pi$

Presence of a neutral particle in the final state makes the Belle(II) reach competitive with LHCb: the full Belle data set should offer comparable resolution to LHCb 2011-2012 dataset. 3 months of expected Belle II performance are expected to match one year of LHCb*. Thus, making B+ \rightarrow (D \rightarrow hh π^0) π /K+ analysis with

- full Belle statistics: will allow to reach LHCb sensitivity level
- one year of Belle II: will be the world best measurement

*Given that in 2016 LHCb has already produced the same amount of B as in Run I, and assuming Belle II luminosity to be x40 times higher than at Belle.

Not the end. The beginning.

Not the end. The beginning.

P.S. Technical question right away. What's the best way to work with Belle/Belle II environment from Italy?