

X-RAY AND (GAMMA-RAY) DETECTOR SYSTEMS FOR HIGH PRECISION MEASUREMENTS

- > Motivation
- Silicon Drift Detectors Kaonic hydrogen mesurement
- Transition Edge Sensors Kaonic helium, charged kaon mass

Johann Zmeskal SMI, ÖAW Vienna, Austria

LNGS SEMINARS November 23, 2016

Motivation

Exotic (kaonic) atoms – probes for strong interaction

- \succ hadronic shift $ε_{1s}$ and width $Γ_{1s}$ directly observable
- experimental study of low energy QCD
- testing chiral symmetry breaking in systems with strangeness

Kaonic hydrogen

➢<u>scattering lengths</u>, no extrapolation to zero energy

➢ precise experimental data:
K⁻p (K⁻He) → SIDDHARTA

K⁻d measurement is urgently needed

determination of the isospin dependent KN scattering lengths

Low-energy \overline{K} -N systems

• Chiral perturbation theory, which was developed for πp , $\pi \pi$ is **not** applicable for \overline{K} -N systems

Forming "exotic" atoms

X-ray transitions to the 1s state

Development of large area Silicon Drift Detectors

for precision X-ray spectroscopy

Sideward depletion structure Emilio Gatti and Pavel Rehak, 1983

Silicon Drift Detector for X-rays

Sloped potential valley

1004

300

200 00

Silicon Drift Detector (SDD)

Homogeneous thin entrance window

Drift Diode (Kemmer+Lutz 1987)

- Single sided structured
- Point anode ⇒ small capacitance, small electronic noise
- Thin, homogeneous radiation entrance window

Silicon Drift Detector (SDD) with integrated FET

Center part of SDD

Inner Guard Ring

Ring 1

Inner Substrate

Ring Anode

Source

Drain LNGS - Seminar November 23, 2016 Reset

Development of large area SDDs EU-programme HadronPhysics

3x1 cm² SDD setup

SDD-chip glued into ceramic frame and bonded. SDD are connected with flexible Kapton boards.

Bonding - optical inspection

problems with "dirty" surface, most probable due to the soldering flux → solved: using Kapton tape to cover the remaining surface during soldering process

Kaonic hydrogen atoms at DAΦNE

DAΦNE principle

• operates at the centre-of-mass energy of the Φ meson mass m = 1019.413 ± .008 MeV width Γ = 4.43 ± .06 MeV

• Φ produced via e⁺e⁻ collision with $\sigma(e^+e^- \rightarrow \Phi) \sim 5 \ \mu b$

 $\rightarrow \Phi$ production rate 2.5 x 10³ s⁻¹

 \rightarrow monochromatic kaon beam (127 MeV/c)

Data taking scheme at $DA\Phi NE$

SDD X-ray energy spectra

Data taking scheme at $DA\Phi NE$

Improved constraints on chiral SU(3) dynamics from kaonic hydrogen Y. Ikeda, T. Hyodo and W. Weise, PLB 706 (2011) 63

Fig. 3. Real part (left) and imaginary part (right) of the $K^-p \to K^-p$ forward scattering amplitude extrapolated to the subthreshold region. The empirical real and imaginary parts of the K^-p scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [7]) are indicated by the dots including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

SDD - front-end readout strategy

- SIDDHARTA JFET integrated on SDD
 - lowest total anode capacitance
 - limited JFET performance
 - sophisticated SDD+JFET technology

- external CUBE preamplifier (MOSFET input transistor)
- larger total anode capacitance
- better FET performances
- standard SDD technology

radiation entrance window

The CUBE preamplifier

- A full CMOS preamplifier is mounted on ceramic board connected via bonding
- The **CUBE** replaces the JFET, which was direct implanted on the anode side on the SIDDHARTA type SDDs
- Short bonding lines from CUBE to SDD, no difference in the detector performance
- Advantage, the preamplifier is connected close to the SDD and not only the FET → ASIC of analogue processing can be placed relatively up to ~100 cm away

Large area Silicon Drift Detector developed by Politech Milano and FBK-Trento, Italy

Prototype of a 3x3 matrix SDD chips

SDD backside with connector for Kapton cable

J-PARC Facility (KEK/JAEA)

LINAC 400 MeV

Neutrino Beam to Kamioka Energy : 3 GeV Repetition : 25 Hz

Rapid Cycle Synchrotron Energy : 3 GeV Repetirion : 25 Hz Design Power : 1 MW

Material and Life Science Facility

Main Ring Top Energy : 30 GeV FX Design Power : 0.75 MW SX Power Expectation : > 0.1 MW

First SDD tested at J-PARC K1.8BR beam time June 2016

First SDD tests at J-PARC

➢ SDD calibration Fe-55

Kaonic Lithium $3\rightarrow 2$

- ✓ Sum of all K⁻ runs
 (0.7 and 0.9 GeV/c)
- ✓ 15.323 ± 0.008 keV
 ~ 1200 counts
- ✓ resolution 160 eV (sigma)
- K⁻Li_{Lα} transition: 15.330 keV (QED)

4x2 Silicon Drift Detector array single cell 8x8 mm²

Take the Anode bonding block.

 \bigcirc

0

0

Place the SDD array (anode side up) on the Anode Bonding block with the vacuum pick up tool.

Ensure that the SDD array is facing the correct direction by looking at the Ring 1 bonding LNGS - Seminar Novembrads, through the microscope.

4x2 SDD array cooling test

- 3 cooling cycles
- Cryostat set to 65 K
- Ceramic temperature 73 K
- No visual damage of SDD/ceramic

Fig. 5. Eight X-ray spectra acquired by irradiating a 2×4 SDD array with an un-collimated 55 Fe X-ray source at a temperature of -30 °C with 3 μs shaping time using.

Fig. 4. Experimental setup employing thermoelectric (Peltier) cooling stage to characterize Siddharta-II arrays at a temperature of -30 °C.

New SDD technology: CUBE preamplifier

LNGS - Seminar November 23, 2016

Kaonic deuterium setup E57 @ J-PARC cryogenic deuterium gas target and detector layout: module with 4 SDD-chips \rightarrow 32 cells final setup \rightarrow 12 modules

SIDDHARTA-2 setup at DAΦNE

Geant4 simulated K⁻d X-ray spectrum for 800 pb⁻¹

signal: shift - 800 eV width 800 eV density: 3% (LHD) detector area: 246 cm² Kα yield: 0.1 % yield ratio as in K⁻p S/B ~ 1 : 3

charged particle vetoasynchronous BG

Application of SDDs in gamma-ray spectroscopy and imaging

clear n-JFET ogs ring#1 p+ entrance window

Advantages of SDDs with respect to other photodetectors:

- high quantum efficiency (~ 90 %)
 @ 565nm of CsI(Tl)
- compact, mechanical robust
- no statistical spread due to multiplication
- low operating voltages
- smaller sensitivity to bias and temperature variations
- insensitivity to magnetic fields seminar November 23, 2016

Applications:

- medical imaging
- gamma-ray astronomy
- homeland security
- nuclear physics experiments

Gamma-ray spectroscopy with an SDD coupled to LaBr₃

2x10⁶ 6x10⁴ 30mm² SDD 137Cs spectrum 661.7 keV Brillance 380 5mm Ø, 1x10⁶ -4x10⁴ 5mm thick Counts 2.7% FWHM 5x10⁵ 2x10⁴ 32 keV Ba X-rays 200 400 600 Energy [keV]

Drastic improvement in resolution

FWHM ~ 150 eV

Effective area : 1 SDD : 100 mm² 8 SDDs = 800 mm² in total

FWHM ~ 5 eV

Effective area : 1 pixel : 300 x 320 µm² 240 array ~ <mark>23 mm² in total</mark>

Comparison: Silicon Drift Detector – Transition Edge Sensor

50

Transition-Edge-Sensor microcalorimeters

✓ Excellent energy resolution ~2 eV FWHM@ 6 keV

✓ Wide dynamic range possible

Breakthrough in energy resolution!

ucst. Silicon-detectors: 150 eV FWHM @ 6 keV

TES micro-calorimeter

a thermal detector measures the energy of an incident X-ray photon as a temperature rise (= $E/C \sim 1 \text{ mK}$)

Absorber with larger "Z" (to stop higher energy X-rays), e.g. Bi (320 μ m × 300 μ m, 4 μ m thick) Thermometer : thin bi-layer film of Mo (~65nm) and Cu (~175nm)

TES = Transition Edge Sensor

using the sharp transition between normal and superconducting state to sense the temperatures - Seminar November 23, 2016

NIST TES system

J.N. Ullom et al., Synchrotron Radiation News, Vol. 27, 24 (2014) Au coated Si collimator

► 50mK cryostat

- ADR hold time: > 1 day
- Manufactured by High Precision Devices, Inc.

Detector snout

- 240 pixel Mo-Cu bilayer TES
 30 ch TDM(time division multiplexing) readout
- ▶ 1 pixel : 300 x 320 $\text{um}^2 \rightarrow \text{total} \sim 23 \text{ mm}^2$
- ^{LNGS Seminar November 23, 2016} → efficiency ~0.85@6 keV

Bi + TES

Mn Ka spectrum

PSI – TES tested with pions

- a) A correlation plot of the time difference between pion arrival and x-ray detection vs the x-ray energy measured by the TES array.
- b) The projection on the time axis showing timing resolution of 1.2 μ s (FWHM). A time gate of ± 1.5 μ s is used in the analysis.
- c) The projection on the energy axis by selecting stopped- π^- time gate.

J-PARC – TES tested with kaons

Calibration spectrum

X-ray spectrum with in-beam condition with X-ray tube switched on

Beam intensity vs energy resolution

Kaonic helium results

NIST's TES for gamma-rays 100 – 400 keV

e.g., hard-X-ray spectroscopy

- NIST's standard TES -
 - 1 pixel : 1.45 x 1.45 mm²
 - 256 array : total ~ <u>5 cm²</u>
 - 53 eV (FWHM) @ 97 keV

State-of-art high-purity germanium detectors

Can TES's detect γ -rays ? Yes, with bulk absorbers

Thank you for your attention!

Future prospects: Kaonic He X-rays at J-PARC

before summer 2017 ??

Expected spectrum based on a background simulation

Simple 100 mK cryogenics

