Investigation of 2β decay of ¹¹⁶Cd with the help of enriched ¹¹⁶CdWO₄ crystal scintillators

O.G. Polischuk ^a, A.S. Barabash ^b, P. Belli ^{c,d}, R. Bernabei ^{c,d}, F. Cappella ^e, V. Caracciolo ^e, R. Cerulli ^e, D.M. Chernyak ^a, F.A. Danevich ^a, S. d'Angelo ^{c,d,+}, A. Incicchitti ^{f,g}, V.V. Kobychev ^a, S.I. Konovalov ^c, M. Laubenstein ^f, V.M. Mokina ^{a,f}, D.V. Poda ^{a,h}, V.N. Shlegel ⁱ, V.I. Tretyak ^a, V.I. Umatov ^c, Ya.V. Vasiliev ⁱ

- g Dipartimento di Fisica, Universita di Roma "La Sapienza", Rome, Italy
- h Centre de Sciences Nucleaires et de Sciences de la Matiere, Orsay, France

^a Institute for Nuclear Research, Kyiv, Ukraine

^b Institute of Theoretical and Experimental Physics, Moscow, Russia

^c Dipartimento di Fisica, Universita di Roma "Tor Vergata", Rome, Italy

d INFN sezione Roma "Tor Vergata", Rome, Italy

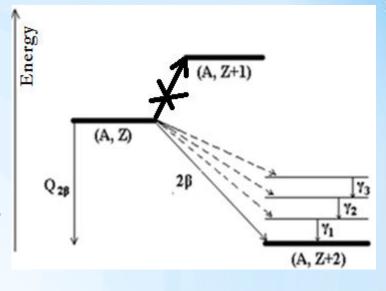
e INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

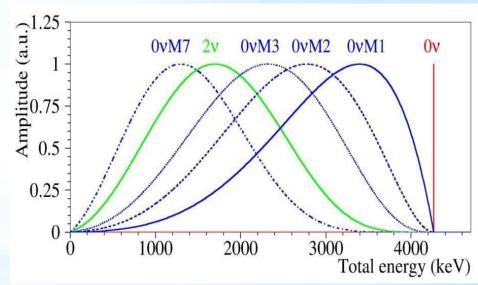
f INFN, sezione di Roma "La Sapienza", Rome, Italy

i Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

⁺ deceased

2β processes


2ν2β (A, Z)
$$\rightarrow$$
 (A, Z + 2) + 2e⁻ + 2 \ddot{v} (allowed in SM)
0ν2β (A, Z) \rightarrow (A, Z + 2) + 2e⁻ (forbidden in SM, Δ L=2)


Detection of $0v2\beta$ decay allows to test:

- nature of neutrino (Dirac or Majorana particle);
- existence of right-handed currents in the weak interaction;
- scale of the neutrino mass and hierarchy, conservation of lepton charge;
- existence of Majorons;
- theory of supersymmetry

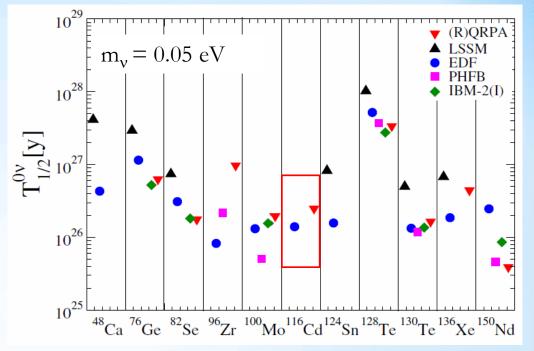
Over 75 years of experimental searches 2ν2β decay was observed only for 11 nuclei in the direct, geochemical and radiochemical experiments (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Ba, ¹³⁰Te, ¹⁵⁰Nd, ¹³⁶Xe and ²³⁸U) with half-lives in the range ~ 10¹⁸–10²⁴ years

2β decay processes with decreasing nuclear charge and 0v2β decay (*) has not been observed yet (130Ba - geochemical and 78Kr - indication in laboratory experiment)

 e_1+e_2 energy spectra for different 2β modes

•One positive claim on observation of $0v2\beta$ in ⁷⁶Ge by HM ($T_{1/2} = 2.2 \times 10^{25}$ yr),

•GERDA ->5.2×10²⁵ yr [M. Agostini talk at NEUTRINO'2016]

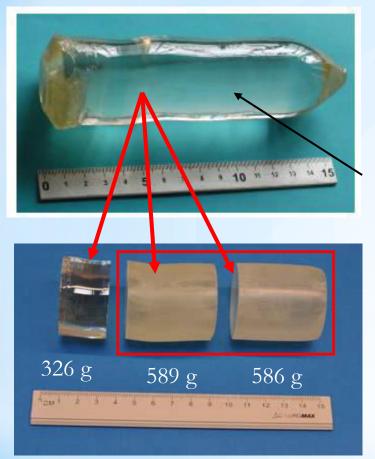

116**C**d

One of the most promising isotopes to search for 0v2β decay

- $Q_{2\beta} = 2813.44(13) \text{ keV}$
- $\delta = 7.5\%$
- promising theoretical calculation
- possible isotopic enrichment in large amount

CdWO₄ crystals

- good scintillation properties
- source = detector approach
- low levels of internal contamination
- particle discrimination ability (\lambda background)


J.D. Vergados et al., RPP 75(2012)106301

CdWO₄ were successfully used in low-background experiments on search for 2β decay of Cd and W [1], as well as for the study of rare α [2] and β [3] decays

The most sensitive $0v2\beta$ experiments (90% C.L.):

- Solotvina, F.A. Danevich et al., PRC 68 (2003) 035501 $T_{1/2} > 1.7 \times 10^{23} \text{ yr}$ NEMO-3, D. Waters, talk at Neutrino'2016 $T_{1/2} > 1.0 \times 10^{23} \text{ yr}$
- [1] ZPA 355(1996)433, EPJA 36(2008)167, PRC 93(2016)045502;
- PRC 67(2003)014310;

¹¹⁶CdWO₄ crystal scintillator

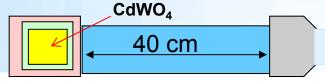
[1] JINST 6(2011)P08011

The optical transmission curve of ¹¹⁶CdWO₄ before and after annealing Attenuation length is 60 cm

Good optical and scintillation properties of the crystal were obtained thanks to the deep purification of ¹¹⁶Cd and W, and the advantage of the low-thermal-gradient Czochralski technique to grow the crystal [1]

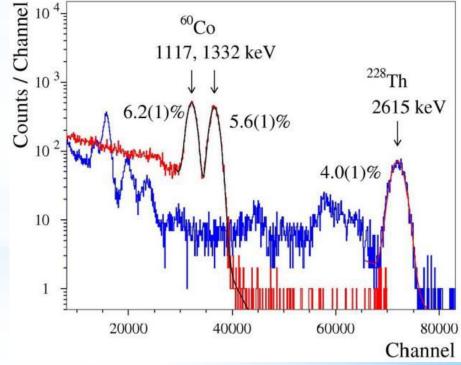
Boule of enriched ¹¹⁶CdWO₄ crystal (82% of ¹¹⁶Cd).

Yield of the crystal boule is 87% of the initial powder Losses (the total production cycle) < 3%

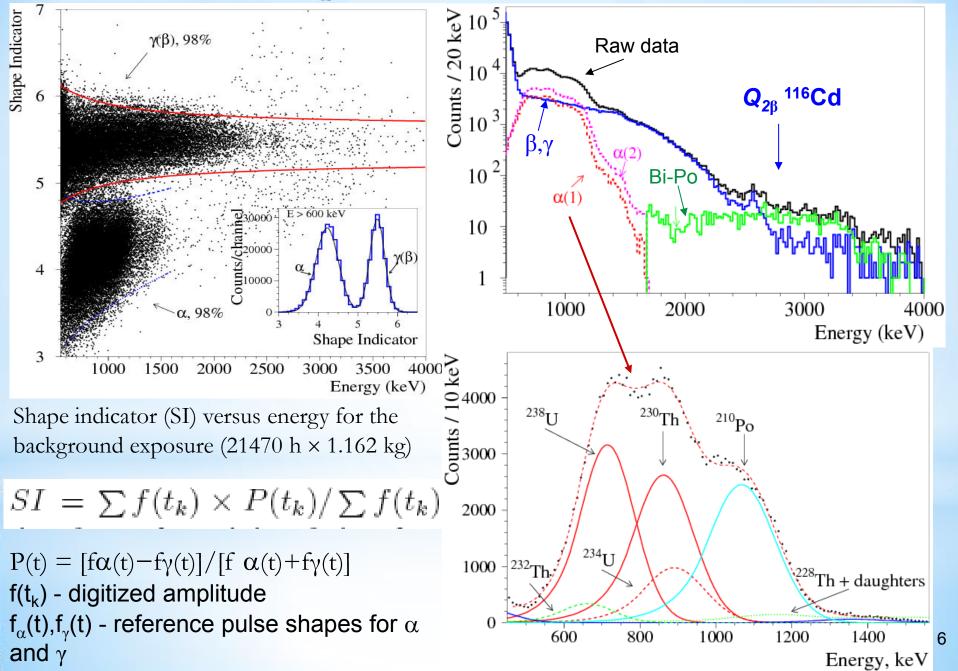


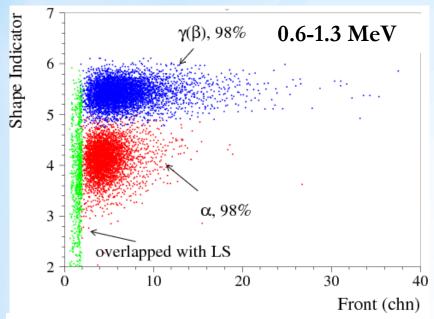

Experiment AURORA

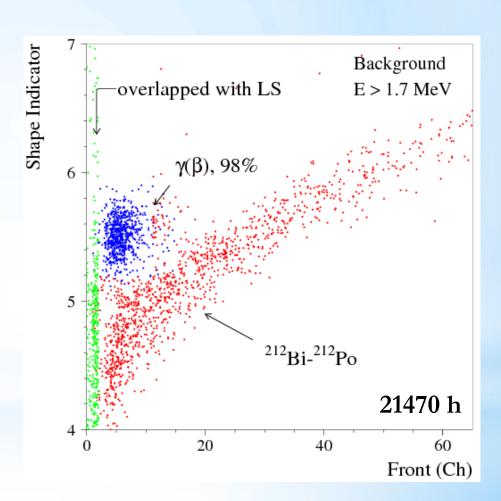
Experiment started in 2011


2 crystals of 116 CdWO₄, 1.162 kg in DAMA/R&D (external shielding – Cu, Pb, polyethylene, Cd, air-tight with N₂ flashing)

Upgrade - March 2014 → Bg \downarrow to \approx 0.1 counts/ (yr×kg×keV) at 2.7–2.9 MeV

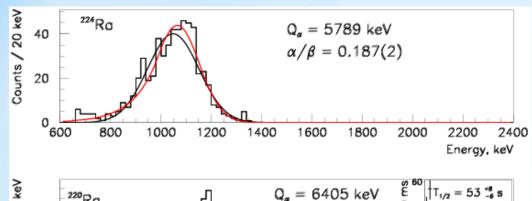


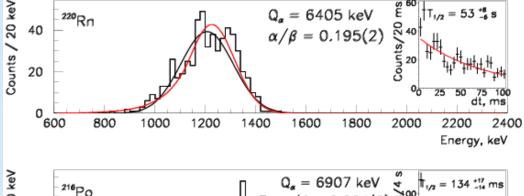


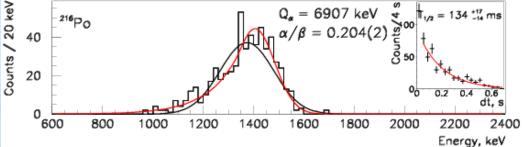

Pulse shape discrimination (PSD), 21470 h

Selection of ²¹²Bi-²¹²Po events by front-edge analysis

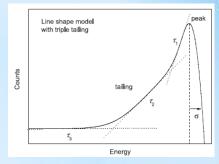
2D histogram: shape indicator versus front edge for the background measurements


Important information from PSD and front-edge analysis:


1) Activity of ²²⁸Th (in μBq/kg), 21470 h Crystal 1 18(2) Crystal 2 27(3)


Change of ²²⁸Th in time Decay of ²²⁸Th ($T_{1/2} \approx 1.9(1) \text{ yr}$) TOI – 1.9116(16) yr 0.07 Activity, mBq/kg DAQ-2 DAQ-5 DAQ-1 $\chi^2 = 0.82$ 0.06 DAQ-30.05 DAQ-4 0.04 DAQ-6 0.03 0.02 0.01 10000 20000 30000 40000 Time,h

3) Rate @ 2.7–2.9 MeV: 0.11(2) cnts/(keV×kg×yr)


Time-amplitude analysis

Alpha peaks of ²²⁴Ra, ²²⁰Rn and ²¹⁶Po selected by the time-amplitude analysis from the data accumulated during 21470 h with the ¹¹⁶CdWO₄ detector No. 1. The obtained half-lives of ²²⁰Rn (53⁺⁸ ₋₆ s) and ²¹⁶Po (0.134^{+0.017} _{-0.014} s) are in agreement with the table values (55.6 s and 0.145 s, respectively [TOI]).

M.J. Koskelo et al., Radioact. Radiochem. 7(1996)18

$$f(u) = \begin{cases} A \exp\left[-\frac{(u-\mu)^2}{2\sigma^2}\right], & \text{if } u \ge \mu - T \\ A \exp\left[\frac{T(2u-2\mu+T)}{2\sigma^2}\right], & \text{if } u < \mu - T \end{cases}$$

A – amplitude of Gauss

 μ – center of Gauss

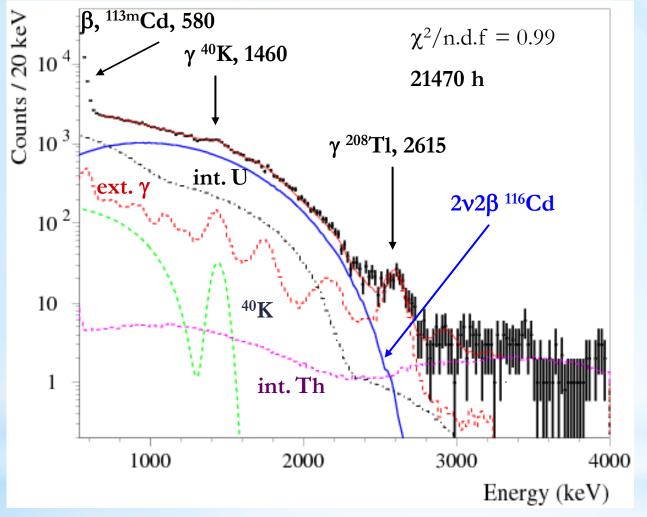
 σ – standard deviation

T determines both the characteristics of the tailing and its joining point with the Gaussian

> Activity of ²²⁸Th, μBq/kg PSD+FA T-A Crystal 1 18(2) 18(1) Crystal 2 27(3) 28(1)

Radioactive contaminations of ¹¹⁶CdWO₄ crystal scintillators (and elements of the set-up)

Chain	Nuclide	Activity, mBq/kg
²³² Th	²³² Th	0.66(9)
	²²⁸ Th	0.22(4)
238U	238U	0.64(3)
	²³⁴ Th	0.24(3)
	²³⁰ Th	0.56(4)
	²²⁶ Ra	≤ 0.005
	²¹⁰ Pb	0.6(1)
	⁴⁰ K	≤ 0.9
	^{110m} Ag	≤ 0.02


Total α activity of two crystals = 2.27 mBq/kg

	Nuclide	Activity, mBq/kg
PMT	²²⁶ Ra	543(226)
	²²⁸ Ra	80(40)
	²²⁸ Th	116(55)
	⁴⁰ K	<830
Copper	²³⁸ U	0.11(1)
	228Th	0.05(4)
	⁴⁰ K	0.3(1)
Light quides	238U	<23
	²²⁸ Th	0.1(1)

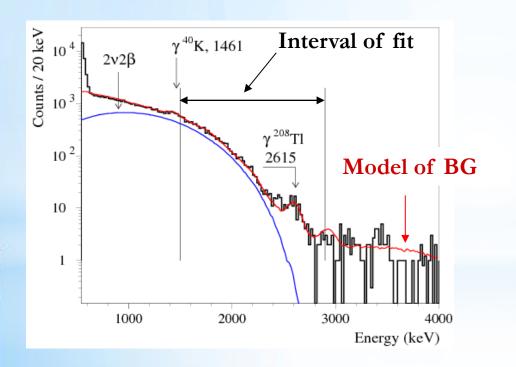
40K

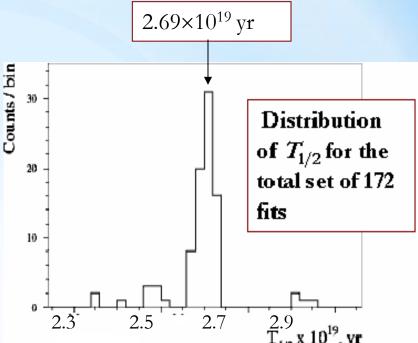
1.2(9)

Two neutrino double beta decay of ¹¹⁶Cd

Simulations (EGS4 + DECAY0 generator)

Signal to bg ratio = 2.6 in [1.1–2.8] MeV

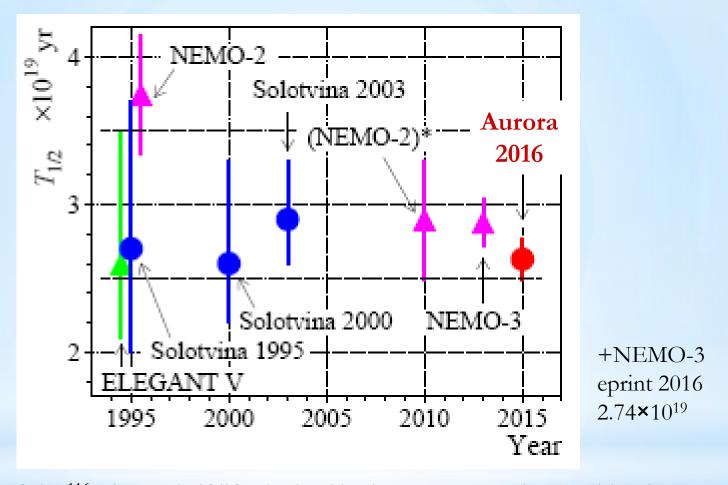

Index of Bg = 0.11(2) in [2.7-2.9] MeV


$$T_{1/2} = [2.69 \pm 0.14(\text{syst.}) \pm 0.02(\text{stat.})] \times 10^{19} \text{ yr}$$

Estimation of systematic errors

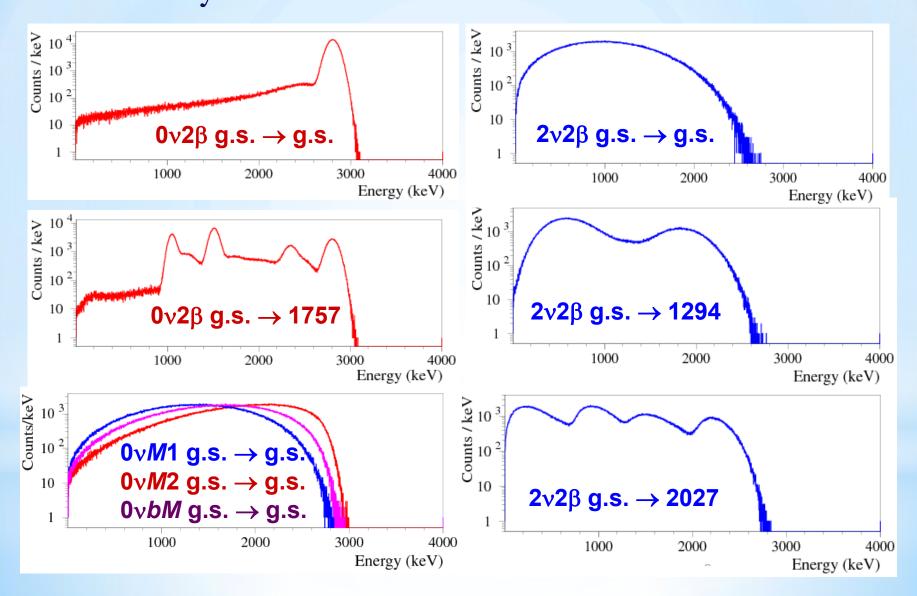
Conditions of the fit:

- Variation of bounds for rad. contaminations
- Model of background
- Interval of fit
- Quenching for β (non proportional light response) [1,2]

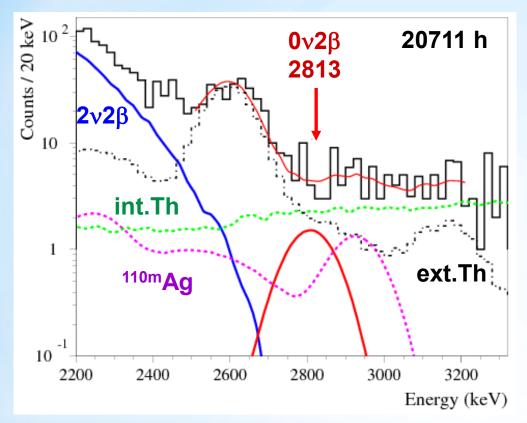


Systematic errors

Source	Contribution,%
Number of nuclei	0.1
Live time	<0.1
Efficiency of PSD	0.5
Fit	5
Simulation	?


[1] PRC 76(2007)064603 [2] NIMA 696(2012)144

Summary of the $T_{1/2}(2\nu2\beta)$ results ¹¹⁶Cd



Comparison of the ¹¹⁶Cd 2*ν*2β half-life obtained in the Aurora experiment with other experiments: ELEGANT V, Solotvina, NEMO-2 and NEMO-3. A reevaluated NEMO-2 value is labelled as (NEMO-2)*.

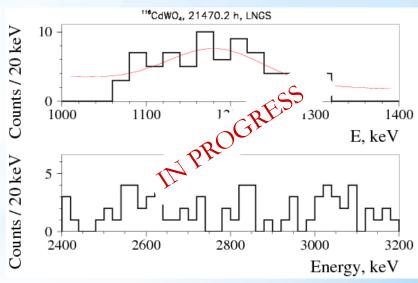
Response of the ¹¹⁶CdWO₄ detector to 2β processes in ¹¹⁶Cd simulated by EGS4

Limit on 0ν2β decay of ¹¹⁶Cd to g.s. of ¹¹⁶Sn

Effective Majorana neutrino mass

$$\langle m_{\nu} \rangle \sim 1.7 \text{ eV } [2]$$

 $\langle m_{\nu} \rangle \sim 1.2 - 1.8 \text{ eV } [3]$


There is no such peculiarity in the spectrum, therefore only lower half-life limit on the process can be set

Fit in 2.5–3.1 MeV with $\chi^2/n.d.f. = 1.13$

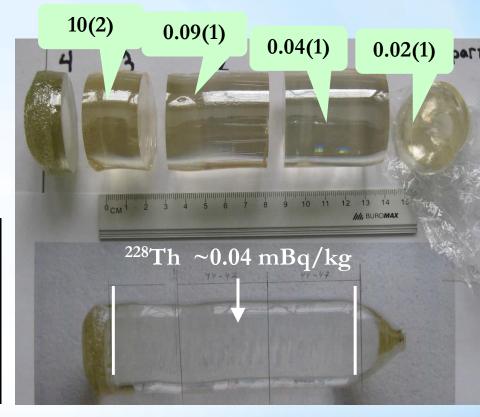
$$S = -3.1 \pm 14.1$$

 $\lim S = 20.1 \text{ counts } @ 90\% \text{ C.L. by } [1]$

- [1] G.J. Feldman and R. D. Cousins, Phys. Rev. D 57(1998)3873
- [2] J. Barea, J. Kotila, and F. lachello Phys. Rev. Lett. 109(2012)042501
- [3] J.D. Vergados, H.Ejiri and F.Simkovic Rep. Prog. Phys. 75(2012)106301

Results

Decay mode	Transition	$T_{1/2}$, yr, present results	T _{1/2} , yr at 90% C.L.
θν	g.s g.s.	$\geq 1.9 \times 10^{23}$	$\geq 1.7 \times 10^{23} [1]$
0ν	g.s 2 ₁ +(1294 keV)	$\geq 6.2 \times 10^{22}$	$\geq 2.9 \times 10^{22} [1]$
0ν	g.s 0_1^+ (1757 keV)	$\geq 6.3 \times 10^{22}$	$\geq 1.4 \times 10^{22} [1]$
0ν	g.s 0_2^+ (2027 keV)	$\geq 4.5 \times 10^{22}$	$\geq 0.6 \times 10^{22} [1]$
0ν	g.s 2 ₂ + (2112 keV)	$\geq 3.6 \times 10^{22}$	$\geq 1.7 \times 10^{20}$ [2] (at 68% CL)
0ν	g.s 2 ₃ ⁺ (2225 keV)	\geq 4.1 × 10 ²²	$\geq 1.0 \times 10^{20}$ [2] (at 68% CL)
0 v M1	g.s g.s.	$\geq 1.1 \times 10^{22}$	$\geq 0.8 \times 10^{22} [1]$
0 v M2	g.s g.s.	$\geq 0.9 \times 10^{21}$	$\geq 0.8 \times 10^{21} [1]$
0 v bM	g.s g.s.	$\geq 2.1 \times 10^{21}$	$\geq 1.7 \times 10^{21} [1]$
2ν	g.s g.s.	$[2.69\pm0.14(\text{syst.})\pm0.02(\text{stat.})]\times10^{19}$	See slide 13
2ν	g.s 2 ₁ +(1294 keV)	$\geq 0.9 \times 10^{21}$	$\geq 2.3 \times 10^{21} [3]$
2ν	g.s 0_1^+ (1757 keV)	$\geq 1.0 \times 10^{21}$	$\geq 2.0 \times 10^{21} [3]$
2ν	g.s 0_2^+ (2027 keV)	$\geq 1.1 \times 10^{21}$	$\geq 2.0 \times 10^{21} [3]$
2ν	g.s 2 ₂ + (2112 keV)	$\geq 2.3 \times 10^{21}$	$\geq 1.7 \times 10^{20} * [2] \text{ (at } 68\% \text{ CL)}$
2ν	g.s 2 ₃ ⁺ (2225 keV)	$\geq 2.5 \times 10^{21}$	$\geq 1.0 \times 10^{20} ^* [2] \text{ (at 68\% CL)}$


Possibility to improve the radiopurity of ¹¹⁶CdWO₄ by re-crystallization

Activity of ²²⁸Th

rest of the melt after the

rest of the melt after the crystal growth

Nuclide	Crystal	Rest of melt
40 K	<1	27(11)
²²⁶ Ra	<0.005	64(4)
²²⁸ Th	0.02 - 0.09	10(2)

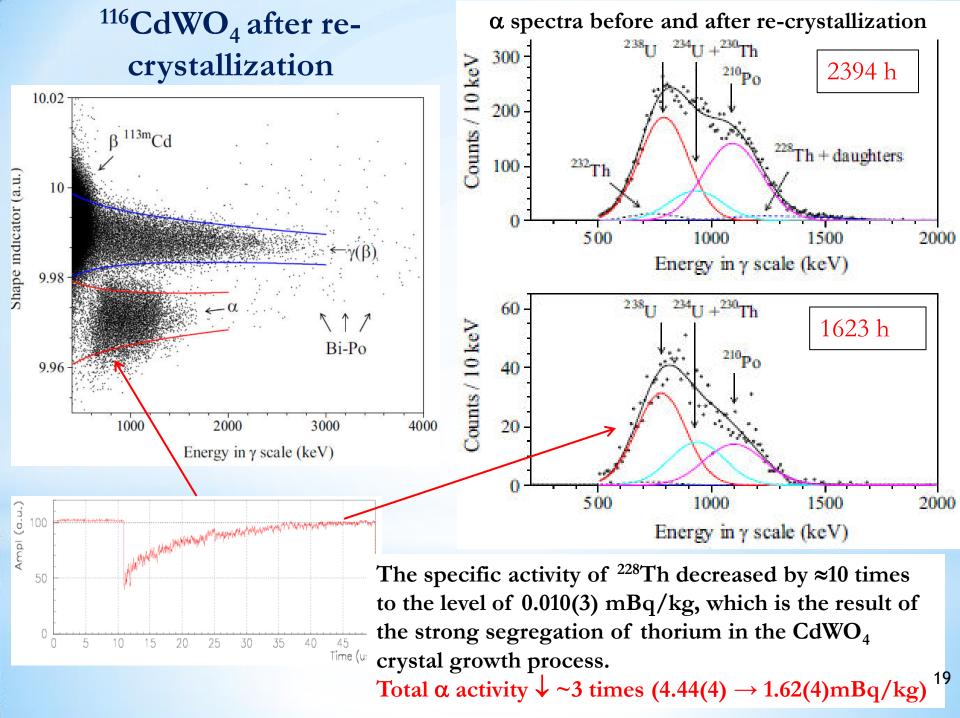
²²⁸Th in the initial ¹¹⁶CdWO₄ powder ~1.4 mBq/kg

Thorium expected to be reduced by a factor $\sim 35 \rightarrow 1 \,\mu \text{Bq/kg}$

We expect to reduce K, Th, U and Ra contamination by re-crystallization \Rightarrow reduction of the background by a factor $4 \Rightarrow$ advancement of the sensitivity up to $\sim 5 \times 10^{23}$ yr [1]

¹¹⁶CdWO₄ after re-crystallization

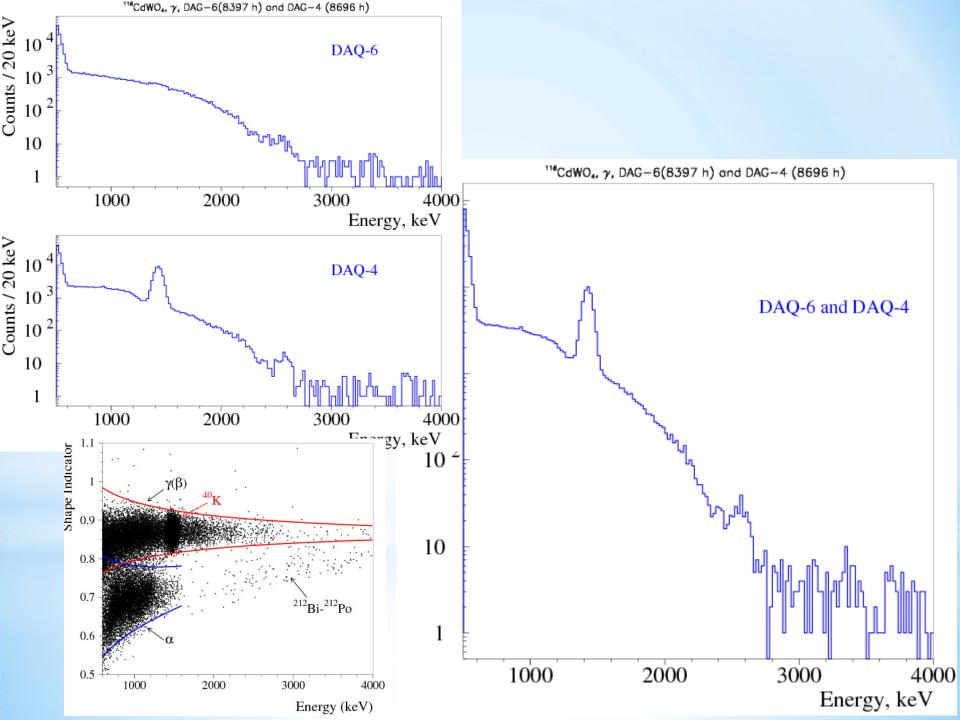
Re-crystallized by the low-thermal-gradient Czochralski technique in a platinum crucible with 99.93% Pt purity level

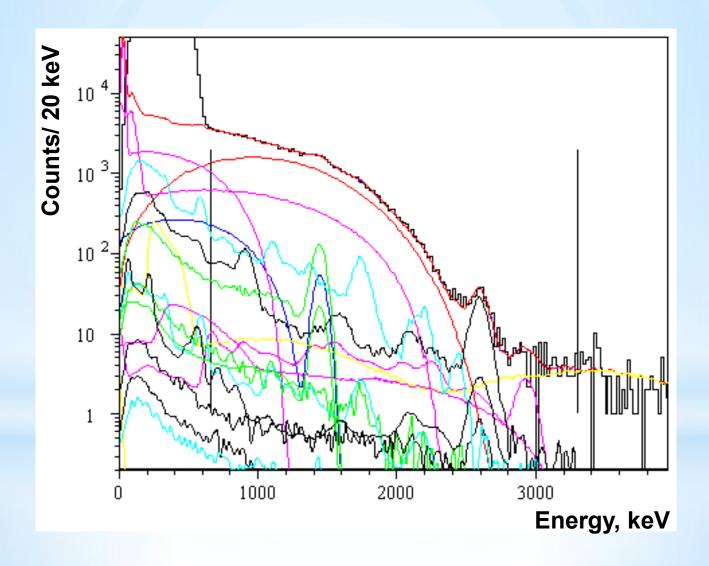


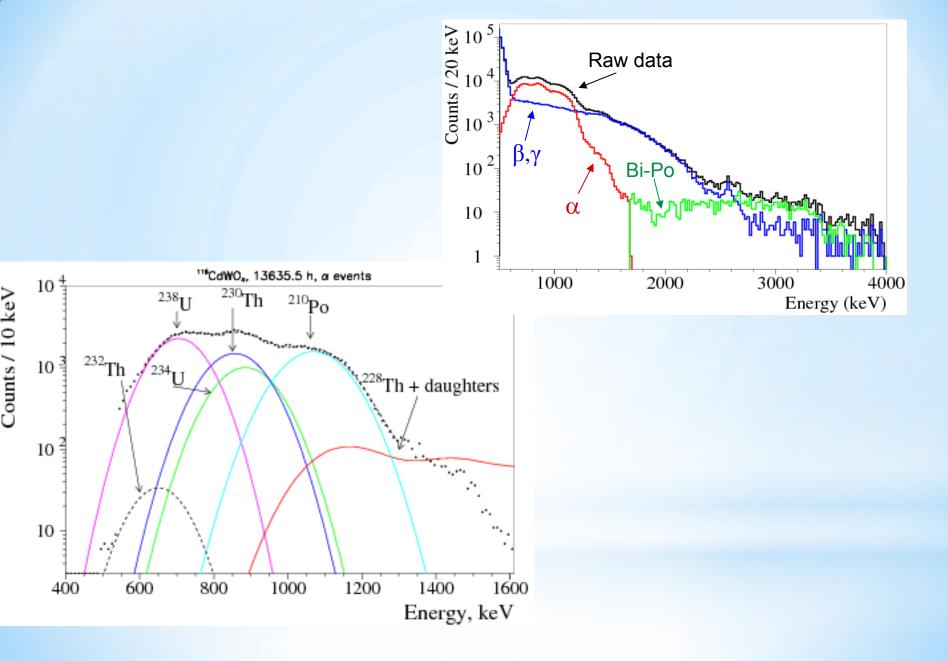
286 g (88% of sample after re-crystallization)

195 g (60% of sample after re-crystallization) The side surface of the sample was made opaque by grinding paper to improve light collection.

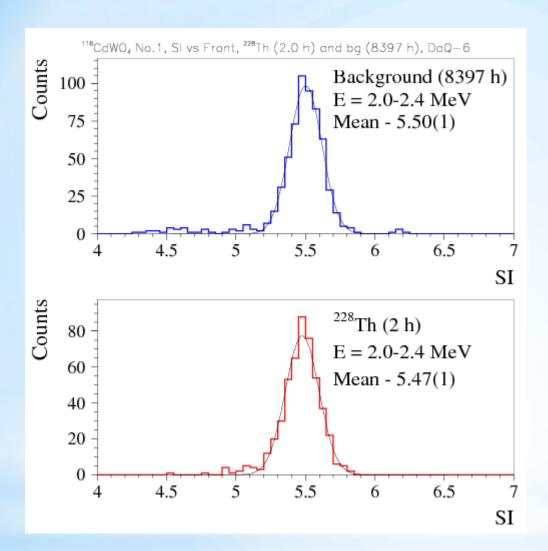
The passive shield of the DAMA/Crys set-up is made of high purity materials: copper (11cm), lead (10cm), cadmium (2mm), polyethylene (10cm)

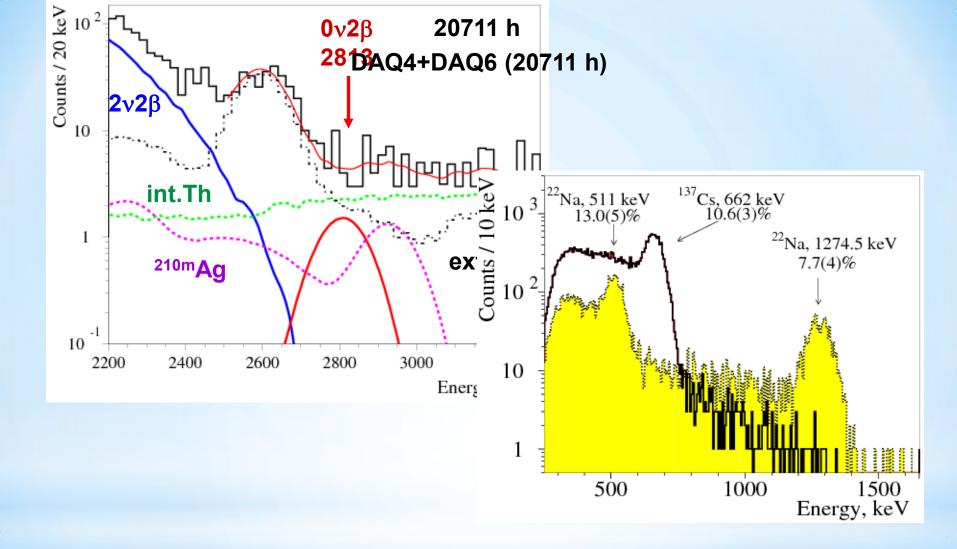



Conclusions


- * Experiment to search for double beta decay processes in ¹¹⁶Cd with the help of enriched in ¹¹⁶Cd (to 82%) low background ¹¹⁶CdWO₄ scintillation detectors (1.16 kg) is in progress at the Gran Sasso underground laboratory of INFN (Italy).
- * The $2v2\beta$ half-life is $T_{1/2}$ ($2v2\beta$) = [2.69 \pm 0.14(syst.) \pm 0.02(stat.)] \times 10¹⁹ yr (in agreement with previous measurements)
- * $T_{1/2}(0v2\beta) \ge 1.9 \times 10^{23} \text{ yr}$ (is on the level of the Solotvina $(1.7 \times 10^{23} \text{ yr})$ and NEMO-3 $(1.0 \times 10^{23} \text{ yr})) \rightarrow \langle m_{\nu} \rangle < (1.4 1.8) \text{ eV}$
- * New improved limits are obtained for 0v2β decay of 116 Cd to excited levels of 116 Sn: $\lim T_{1/2} \sim (2.9-7.8) \times 10^{22} \text{ yr}$

The main background component, internal 228 Th, can be reduced by 35 times by recrystallization \rightarrow sensitivity of the experiment $T_{1/2} \ge 5 \times 10^{23}$ yr


Thank you for attention!



M.J. Koskelo, W.C.Burnett, P.H.Cable, Anadvanced analysis program for alphaparticle spectrometry, Radioact. Radiochem. 7(1996)18–27.

Fit in 2.5 - 3.16 MeV gives area of the effect $S = -3.7 \pm 10.2$ counts -> $T_{1/2}$ > 1.9e23 yr