JLab EIC Detector(s)

Evaristo Cisbani INFN Roma e Istituto Superiore di Sanità

Incontro EIC-INFN / Genova / 17 Gennaio 2017

- Requisiti e concetti generali
- Spazio delle fasi
- Spettrometro centrale
- Regioni in avanti

EIC Physics and Requirements

- Electron (and positron) and ion beams from proton to Pb/U
- Polarization (e, p, d, ³He) >70%, e-polarimetry precision down to 1% for e
- Luminosity up to ≈10³⁴/(cm s)
- CM energy large and variable (20-100 GeV)
- Reach very low $x pprox 10^{-4}$
- Inclusive, Seminclusive and Exclusive reactions
- Good Particle ID (for hadrons and leptons)
- Vertex Resolution down to 0.1 mm
- Momentum Resolution (down to ≈100 MeV ≈1%)

Particles Detection and Kinematics Reconstruction

Need to measure: $\vec{k}', M_h, \vec{p}_h, \vec{p}_X$ (and M_X)

Reconstruct:

 Q^2 : spatial scale

- x : mom. fraction of the parton
- y : inelasticity

$$(Q^2 = s \cdot x \cdot y)$$

• Detect three types of particles:

- Scattered electron (central and forward)
- Hadron(s) (jet) associated with struck parton (mainly central)
- Hadron(s) associated with initial ion (mainly forward)

JLEIC at first IP: ~100% acceptance for all final state particles, and measure them with good resolution.

17/01/2017

JLEIC - E. Cisbani - EIC-INFN

3

1st Interaction Region (=IP1) Concept @JLEIC

- The goal is to get ~100% acceptance for all final state particles, and measure them with good resolution.
- Experimental challenges:
 - a) beam elements limit forward acceptance,
 - b) central Solenoid not effective for forward particles

Detectors in JLEIC IP1

• GEANT4 detector model developed, simulations in progress Adapted from M. Diefenthaler / JLEIC Coll. Meet. Oct/2016

Pion kin. distribution, non excl. reactions

Ion beam energy

4 5 GeV on 50 GeV 5 GeV on 100 GeV 5 GeV on 250 GeV Rapidity -2 100 E -4 800 10 GeV on 250 <u>GeV</u> 10 GeV on 50 GeV Rapidity -2 100 E 100 E -4 20 GeV on 50 GeV 20 GeV on 100 GeV 20 GeV on 250 GeV Electron beam energy Rapidity -2 100 E -4 30 GeV in 100 GeV -30 GeV on 250 GeV 30 GeV on 50 GeV 700 E Rapidity -2 10⁻¹ 10² 10⁻¹ 10⁻¹ Momentum (GeV/c) Momentum (GeV/c) Momentum (GeV/c)

17/01/2017

electrons

JLEIC – Central Detector in IP1

ion

JLEIC - E. Cisbani - EIC-INFN

e

Magnet (Solenoid)

Tracking

- Vertex:
 - Resolve secondary vertex (e.g. b and c quarks with lenght 100-500 um)
 - stand-alone measurement for low-Pt particles
 - dE/dx for P-ID
 - Si trackers (pixels) need high segmentation and low material budget
 RD18 on Monolithic Active Pixel Sensor (from STAR)
- Barrel (low material budget, relatively fast):
 - Spatial resolution $\approx 0.25 \text{ mm} \rightarrow \frac{\Delta p_t}{n_t} \approx 10^{-4}$
 - Limited low energy hadron separation by dE/dx
 - Low Mass Drift Chambers (KLOE LMDC ?)
- Endcaps (need high granualirity and radiation hardness)
 - Spatial resolution \approx 0.05 mm
 - Two R&D (eRD3 and eRD6) ongoing (including large GEM and cylindrical MicroMegas, low material budget Chromium-GEM, commercial company producing GEM)

EM-Calorimetry

- Energy position and time of electron shower and hadron preshower
- Barrel:
 - Sampling (Shashlyk) scintillation + WLS (rad. hard. ?)
 - High Res. Sampling: Tungsten Powder + Scintillation fibers from UCLA (eRD1)
- Endcaps:
 - Sampling (Shashlyk) as before
 - PWO4 crystals (good rad. hard);
 supplier issue,
 crystal QA test → eRD1

hadron-ID (eRD14)

Hadron ID beneficial for many physics case, expecially in the high-momentum tails:

- SIDIS
- 3D tomography
- Diffraction/gluon saturation
- Open charm

Technology options:

- e-endcap: TOF and aerogel RICH
- h-endcap: TOF and gas+aerogel RICH
- Barrel: TOF & DIRC

h-PID (eRD14)

- Low Momenta:
 - TOF (everywhere) based on mRPC, π/K separation up to p=3.5 (eendcap), 2 (barrel), 4 (h-endcap) GeV (assuming 30 ps sigma); R&D toward 10 ps, manufacturing optimization
- Medium momenta:
 - DIRC (barrel); synergy with PANDA –
 3 layer lens and exploit time in reconstruction; 4.3σ in π/K at 6
 GeV/c demonstrated in GEANT4.
 MonteCarlo, test and validation Fused silication for the silication ongoing

Mylar mRPC

h-PID – RICH - (eRD14)

- Medium momenta:
 - Modular RICH (e-endcap): very compact assembly with aerogel + Fresnel lens; nees high res. Photon detector (≈2 mm)

- Medium-High momenta:
 - Dual radiator RICH (h-endcap): aerogel and C_xF_y gas, up to 60 GeV/c π/K 3 σ separation; focusing mirror, curved detector surface, need to operate in magnetic field – detailed simulation

Effort to identify cost-effective photosensor solution for DIRC, mRICH, dRICH

h-ID (eRD14) Performance

barrel: high-performance DIRC

High-resolution mRPC TOF

e-ID (eRD14)

- Basic e/pi ID is provided by the EM cal (but only about 1:100 pion suppression)
- The Cherenkov detectors developed by eRD14 provide supplementary e/pi ID
- h-endcap: needed for all momenta. dRICH can cover up to 20 GeV
- e-endcap and barrel: needed for low momenta. DIRC and mRICH can cover up to about 2 GeV

- In the future, R&D on dedicated e/pi systems could follow
- e-endcap: Fast e/pi Cherenkov based on the PHENIX HBD, but in a reversed configuration (also possible radial TPC)
- h-endcap: a TRD could replace some of the GEM trackers
- Collaboration with eRD6?

JLEIC forward hadron spectrometer

3_{*} (m), β_{*} (m)

JLEIC forward electron region

JLEIC Second Interaction Point

- 1st IP (white paper): focuses on single particle reconstruction and identification
- 2nd IP: compact and focuses on calorimetry-jets

- Combine results for precision measurements
- Increase scientific productivity
- Cross-checks on discoveries and important physics results

Adapted from Yulia Furletova

Conclusione

Adapted, from M. Diefenthaler / JLEIC Coll. Meet. Qct/2016N