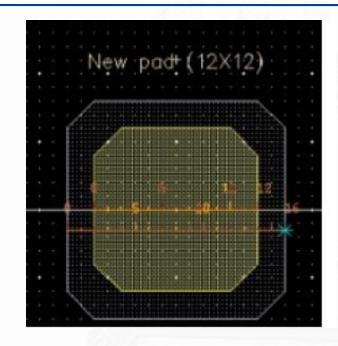


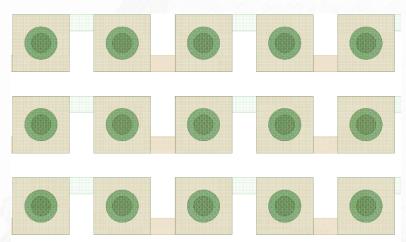
# **Pixel Module Summary**

F. Hügging & R. Bates



#### Introduction

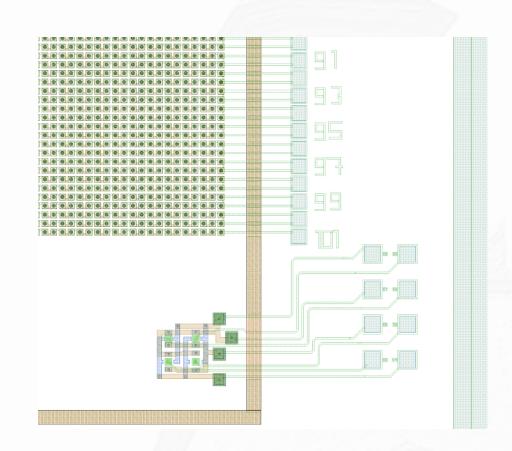




- Will not summarize the pixel module and sensor sessions from the last two days.
  - please go to the indico sites if you are interested in the details:
    - Modules: <a href="https://indico.cern.ch/event/587242/">https://indico.cern.ch/event/587242/</a>
    - Sensors: <a href="https://indico.cern.ch/event/587234/">https://indico.cern.ch/event/587234/</a> and https://indico.cern.ch/event/587238/
- Here I will raise a few issues which have not been discussed during this week but are probably important to a wider community:
  - Daisy chain program for bump bonding qualification
  - Pixel modules types and module sizes
  - Pixel sensor market survey prpaparations

## **Daisy Chain Wafer for BB qualification**



- For bump bonding qualification 300 mm dummy (daisy chain) wafer are useful for certain aspects:
  - bump deposition with bump density of 400 per mm<sup>2</sup>
  - flip chip tests
- MPI (Anna, Julien) prepared a draft design with:
  - die size 2 cm x 2 cm with 400 x 400 pixel array of 50 x 50  $\mu$ m<sup>2</sup> pixel size
  - metal layer, passivation layer and bump mask (UBM and/or bump deposition)
  - 35 μm square metal pads for "sensor" and 16 μm for "FE", 12 μm passivation openings and 20 μm UBM/bump pads
  - daisy chains connects rows accessible from both sides






### **Daisy Chain Wafer for BB qualification**



- Sensor and FE on the same 300mm wafer processed at IZM
  - only one mask set needed
  - about 100 dies per wafer
- 3 configurations possible:
  - only metal and passivation
  - metal, passivation and UBM (sputtered Ti/W + Cu)
  - metal, passivation, UBM and bump deposition (electroplated SnAg)
- 'inofficial' quotation from IZM:
  - masks + 10 wafers for metal & passivation: 20.000€ (~1.000 per additional wafer)
  - masks + 10 wafers including bumping: 28.000€ (~1.300 € per additional wafer)



### Pixel module types and sizes



- Currently we have 3 different module types in the different pixel layouts:
  - single chip modules, double-chip modules (like in IBL) and quad-modules (2 x 2 chips)
  - currently we're using the FE-I4 chip size (400 x 336 pixels of 50 μm x 50 μm) and the derived quad and double-chip module sizes for prototyping
- Most of the parameters of the modules are NOT defined by now:
  - final chip size 
     constraint by several things
     like maximum data rate at minimal radius, die
     size etc.
  - modules sizes are intervened with local support and pixel layout
  - space between chips and modules and between modules on local support
  - Thicknesses of sensors and chips in the different layers 
     there exist a large variety, connected to the costs and risks



### Pixel sensor market survey



- Started to prepare for the pixel sensor market survey:
  - up to now Anna, Sebastian, Richard, Fabian were involved
  - like to enlarge the group, i.e. Paolo, Steve (as PLs) plus some representative from the US and Japan
  - still discussing whether we should aim for a combined market survey with CMS
    - for strips this delayed considerable the progress and the timelines for CMS pixel are quite different
- Scope of the market survey:
  - only for the outer parts of the pixel system, i.e. this means just n-in-p planar pixel on 6" or 8" wafers
  - inner parts like 3D sensors or thin n-in-p or n-in-n planar are smaller orders and don't require a market survey
- Next steps:
  - plan for meeting of all contributors (November 24 perhaps) to agree on the next steps
  - start preparing the technical specifications Anna agreed to coordinate this effort
  - get in contact with CMS colleagues to discuss the possibility of a combined market survey.