

Radiazione di gravitoni ad energie estreme

Dimitri Colferai

(colferai@fi.infn.it)

Università di Firenze e INFN Firenze

Phys.Rev.Lett. 115 (2015) 171301; Phys.Rev.D93 (2016) 044052

In collaborazione con M. Ciafaloni, F. Coradeschi e G. Veneziano

Sesto Fiorentino, 7 novembre 2016

Motivazioni

- Problema fondamentale: descrizione quantistica della gravità (RG ↔ MQ)
- Il nostro ambito: indagare con le teorie a disposizione processi all'interfaccia tra i rispettivi domini di applicabilità
- Concretamente: la formazione e l'evoluzione di buchi neri per fare luce sul *paradosso dell'informazione*
 - RG: concentrando $E = mc^2 \Rightarrow BN \Rightarrow$ perdita di informazione (o trasferimento in un altro universo)
 - TC o TS: dinamica descritta da S unitaria \Rightarrow conservazione dell'informazione
 - Complicazione: radiazione di Hawking: BN emette, ma incoerentemente

Motivazioni

- Problema fondamentale: descrizione quantistica della gravità (RG ↔ MQ)
- Il nostro ambito: indagare con le teorie a disposizione processi all'interfaccia tra i rispettivi domini di applicabilità
- Concretamente: la formazione e l'evoluzione di buchi neri per fare luce sul *paradosso dell'informazione*
 - RG: concentrando $E = mc^2 \Rightarrow BN \Rightarrow$ perdita di informazione (o trasferimento in un altro universo)
 - TC o TS: dinamica descritta da S unitaria \Rightarrow conservazione dell'informazione
 - Complicazione: radiazione di Hawking: BN emette, ma incoerentemente
- Domanda cruciale:

da una teoria quantistica emerge

una descrizione semiclassica di un collasso gravitazionale?

Il processo in esame

[Amati, Ciafaloni, Veneziano 87], [Gross, Mende 87]

Urto di 2 stringhe ad energie trans-planckiane $\sqrt{s} \gg M_P \equiv \sqrt{\hbar/G}$;

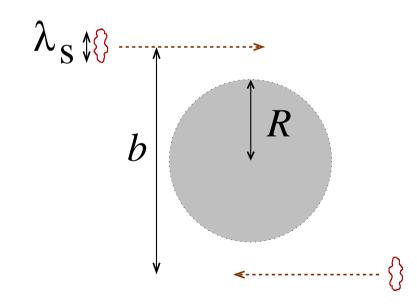
Permette di utilizzare la MQ

permette la creazione di un BN macroscopico (RG)

$$\lambda_P \equiv \sqrt{\hbar G}$$
 $\lambda_s \equiv \sqrt{\hbar \alpha'}$

$$\lambda_s \equiv \sqrt{\hbar \alpha'}$$

$$R \equiv 2G\sqrt{s}$$



Il processo in esame

[Amati, Ciafaloni, Veneziano 87], [Gross, Mende 87]

Urto di 2 stringhe ad energie trans-planckiane $\sqrt{s} \gg M_P \equiv \sqrt{\hbar/G}$;

Permette di utilizzare la MQ

permette la creazione di un BN macroscopico (RG)

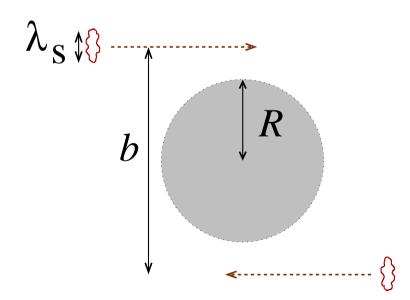
$$\lambda_P \equiv \sqrt{\hbar G}$$
 $\lambda_s \equiv \sqrt{\hbar \alpha'}$ \ll $R \equiv 2G\sqrt{s}$

$$\lambda_s \equiv \sqrt{\hbar \alpha'}$$

$$R \equiv 2G\sqrt{s}$$

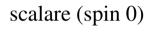
Regime semiclassico:

- $\lambda_P \ll R \qquad \iff \qquad \sqrt{s} \gg M_P$ azione $\sim Gs \gg \hbar$
- $R \ll b$ urto iconale: $\theta_E = 2R/b \ll 1$
- $R \sim b$ grandi deflessioni: $\theta_E \sim 1$ (accoppiamento forte)



Per calcolare questi processi d'urto usiamo una *teoria di campo efficace* schematizzabile in termini di diagrammi di Feynman (con analogie e differenze) Ad alta energia le particelle interagiscono essenzialmente:

scambiando gravitoni

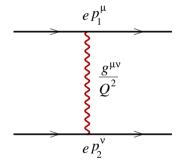


$$\frac{\lambda^2}{Q^2}$$

$$\begin{array}{c|c}
 & \lambda \\
\hline
P_1 & Q & \frac{1}{Q^2} \\
\hline
P_2 & \lambda & \lambda
\end{array}$$

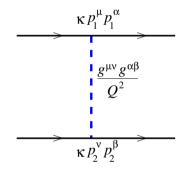
vettoriale (spin 1)

$$\alpha \frac{s}{Q^2}$$



gravità (spin 2) α_{c}

$$\frac{\kappa^2 s^2}{Q^2} = Gs \frac{s}{Q^2}$$



Per calcolare questi processi d'urto usiamo una *teoria di campo efficace* schematizzabile in termini di diagrammi di Feynman (con analogie e differenze) Ad alta energia le particelle interagiscono essenzialmente:

scambiando gravitoni scalare (spin 0)

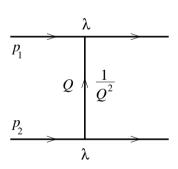
$$\frac{\lambda^2}{Q^2}$$

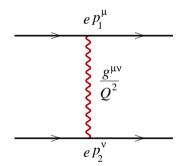
vettoriale (spin 1)

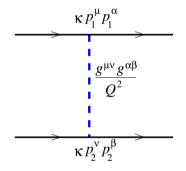
$$\alpha \frac{s}{Q^2}$$

gravità (spin 2) α_G $\kappa^2 s^2$

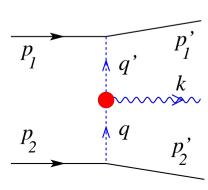
$$\frac{\kappa^2 s^2}{Q^2} = Gs \frac{s}{Q^2}$$





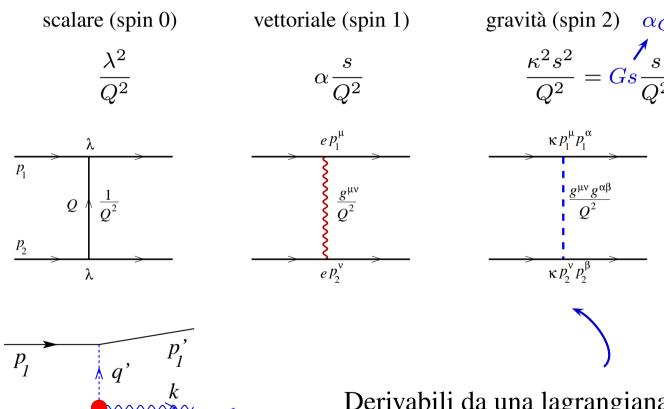


producendo gravitoni



Per calcolare questi processi d'urto usiamo una *teoria di campo efficace* schematizzabile in termini di diagrammi di Feynman (con analogie e differenze) Ad alta energia le particelle interagiscono essenzialmente:

scambiando gravitoni

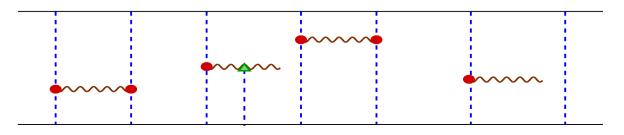


producendo gravitoni Derivabili da una lagrangiana che definisce una TC efficace

 p_2

- La lagrangiana efficace si può ricavare dalla:
 - RG nel limite di Regge $s \gg Q^2$ della \mathcal{L}_{HE} [Lip,KS, date]
 - TS nel limite di TC: $\lambda_P, \lambda_s \ll R, b$ [ACV, data]
 - Fortissima contrazione di Lorentz disaccoppia i GL longitudinali (accoppiamenti) da quelli trasversi (dinamici)

- La lagrangiana efficace si può ricavare dalla:
 - RG nel limite di Regge $s \gg Q^2$ della \mathcal{L}_{HE} [Lip,KS, date]
 - TS nel limite di TC: $\lambda_P, \lambda_s \ll R, b$ [ACV, data]
 - Fortissima contrazione di Lorentz
 disaccoppia i GL longitudinali (accoppiamenti) da quelli trasversi (dinamici)
- La teoria non è rinormalizzabile:
 - i diagrammi di loop divergono UV ma è lecito trascurarli se $q \ll M_P$ [cfr. Fermi]
 - i gravitoni scambiati sono molto soffici perchè le stringhe sono oggetti estesi [cfr. Rutherford]
 - $\alpha_G \gg 1$ favorisce lo scambio di molti gravitoni ciascuno di impulso $q \sim \hbar/b \ll M_P$ [cfr. QED e QCD]

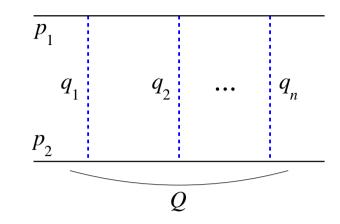


Urti elastici ($b \gg R$)

Termini dominanti: diagrammi a scala [ACV '88?]

- Approx iconale: $p_{1,2}$ (quasi) non deflessi
- Ampiezza dipende solo dalle componenti trasverse dei q_i : $M_1 = \frac{Gs}{q^2}$

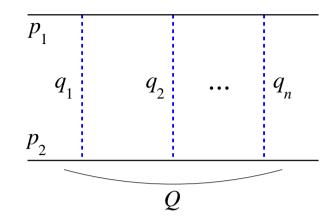
Radiazione di gravitoni ad energie estreme



Urti elastici ($b \gg R$)

Termini dominanti: diagrammi a scala [ACV '88?]

- Approx iconale: $p_{1,2}$ (quasi) non deflessi
- Ampiezza dipende solo dalle componenti trasverse dei q_i : $M_1 = \frac{Gs}{q^2}$



$$iM_n(s, \mathbf{Q}) = \frac{i^n}{n!} \int d^2 \mathbf{q}_1 \cdots d^2 \mathbf{q}_n \quad M_1(s, \mathbf{q}_1) \cdots M_1(s, \mathbf{q}_n) \quad \delta^2(\mathbf{q}_1 + \cdots + \mathbf{q}_n - \mathbf{Q})$$

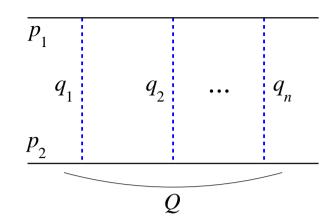
$$iM_n(s, \mathbf{b}) = \int d^2 \mathbf{Q} e^{i\mathbf{Q} \cdot \mathbf{b}} iM(s, \mathbf{Q}) = \frac{i^n}{n!} [M(s, \mathbf{b})]^n \qquad \qquad \text{IR cutoff}$$

$$S_{\text{el}}(s, \mathbf{b}) = \sum_n iM_n = e^{iM_1(s, \mathbf{b})} = e^{i2\delta_0(s, \mathbf{b})} , \qquad \delta_0 = Gs \log \frac{L}{|\mathbf{b}|}$$

Urti elastici ($b \gg R$)

Termini dominanti: diagrammi a scala [ACV '88?]

- Approx iconale: $p_{1,2}$ (quasi) non deflessi
- Ampiezza dipende solo dalle componenti trasverse dei q_i : $M_1 = \frac{Gs}{q^2}$

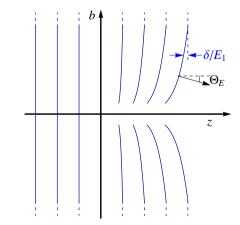


$$iM_n(s, \mathbf{Q}) = \frac{i^n}{n!} \int d^2 \mathbf{q}_1 \cdots d^2 \mathbf{q}_n \quad M_1(s, \mathbf{q}_1) \cdots M_1(s, \mathbf{q}_n) \quad \delta^2(\mathbf{q}_1 + \cdots + \mathbf{q}_n - \mathbf{Q})$$

$$i\mathcal{M}_n(s, \mathbf{b}) = \int d^2 \mathbf{Q} e^{i\mathbf{Q} \cdot \mathbf{b}} iM(s, \mathbf{Q}) = \frac{i^n}{n!} [\mathcal{M}(s, \mathbf{b})]^n \qquad \qquad \text{IR cutoff}$$

$$S_{\text{el}}(s, \mathbf{b}) = \sum_n i\mathcal{M}_n = e^{i\mathcal{M}_1(s, \mathbf{b})} = e^{i2\delta_0(s, \mathbf{b})} , \qquad \delta_0 = Gs \log \frac{L}{|\mathbf{b}|}$$

Deflessione:
$$\theta_E=\frac{2}{\sqrt{s}}\frac{\partial \delta_0}{\partial \boldsymbol{b}}=-\frac{2R}{|\boldsymbol{b}|}$$
 come in RG

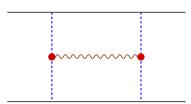


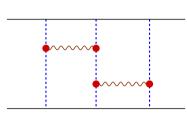
Urti elastici ($b \sim R$)

Termini sotto-dominanti: diagrammi "multi H" [ACV '90]

• Correzioni di ordine relativo $\mathcal{O}\left(\frac{R^2}{b^2}\right)$

$$\theta_s = \theta_E \left(1 + \frac{R^2}{b^2} + \cdots \right)$$





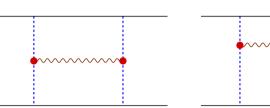
Urti elastici ($b \sim R$)

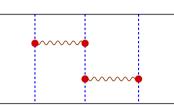
Termini sotto-dominanti: diagrammi "multi H" [ACV '90]

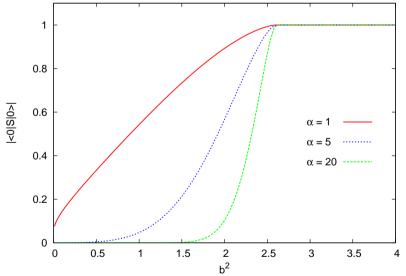
- Correzioni di ordine relativo $\mathcal{O}\left(\frac{R^2}{b^2}\right)$ $\theta_s = \theta_E \left(1 + \frac{R^2}{b^2} + \cdots\right)$
- Lo sfasamento $\delta(s, \boldsymbol{b})$ acquista una parte immaginaria per $b < b_c = 1.6R$

Radiazione di gravitoni ad energie estreme

• $|S_{\rm el}(s, \boldsymbol{b})| < 1 \ {
m per} \ b < b_c$ [ACV '07]



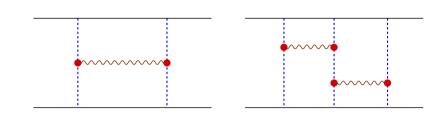




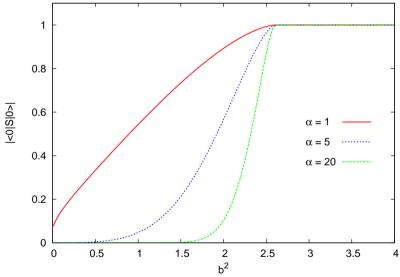
Urti elastici ($b \sim R$)

Termini sotto-dominanti: diagrammi "multi H" [ACV '90]

Correzioni di ordine relativo $\mathcal{O}\left(\frac{R^2}{b^2}\right)$ $\theta_s = \theta_E \left(1 + \frac{R^2}{b^2} + \cdots \right)$



- Lo sfasamento $\delta(s, \boldsymbol{b})$ acquista una parte immaginaria per $b < b_c = 1.6R$
- $|S_{\rm el}(s, {m b})| < 1 \ {
 m per} \ b < b_c$ [ACV '07]



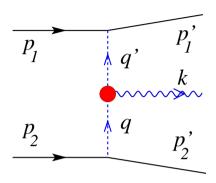
Difetto di unitarietà: basta tenere in conto della produzione di gravitoni?

Radiazione di gravitoni ad energie estreme

È il segnale di un collasso? $1 - |S_{\rm el}| \sim (b - b_c)^{3/2}$

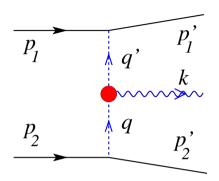
$$1 - |S_{\rm el}| \sim (b - b_c)^{3/2}$$

Irraggiamento: ampiezza di Regge



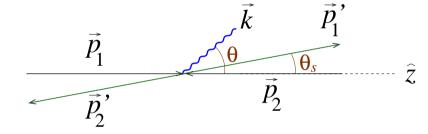
- [ACV 2007] hanno usato il vertice di Lipatov per la radiazione di gravitoni
- energia emessa maggiore di \sqrt{s} se $R < b < \sqrt{Gs} \, R$ crisi dell'energia!

Irraggiamento: ampiezza di Regge

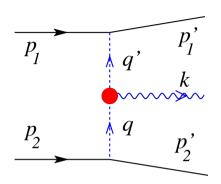


- [ACV 2007] hanno usato il vertice di Lipatov per la radiazione di gravitoni
- energia emessa maggiore di \sqrt{s} se $R < b < \sqrt{Gs} R$ crisi dell'energia!

Problema: vertice di Lipatov accurato solo in regione centrale $\theta \gg \theta_s$ (cinematica di Regge)

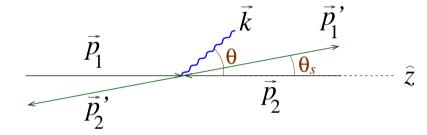


Irraggiamento: ampiezza di Regge



- [ACV 2007] hanno usato il vertice di Lipatov per la radiazione di gravitoni
- energia emessa maggiore di \sqrt{s} se $R < b < \sqrt{Gs} R$ crisi dell'energia!

Problema: vertice di Lipatov accurato solo in regione centrale $\theta \gg \theta_s$ (cinematica di Regge)



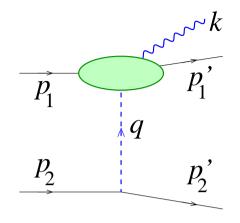
$$M_{\text{Regge}} \simeq M_{\text{el}} J_L^{\mu\nu}(\mathbf{q}, \mathbf{q'}) \epsilon_{\mu\nu}^{(+)} = \kappa^3 s \frac{e^{2i(\phi_{\mathbf{q}} - \phi_{\mathbf{q'}})} - 1}{\mathbf{k}^2}$$
$$= \kappa^3 s \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{\mathbf{k} \mathbf{k}^* \mathbf{q} \mathbf{q'}^*} \quad (\mathbf{k} \equiv k_x + i k_y \in \mathbb{C})$$

Ampiezza di elicità ha una singolarità collineare non fisica a k=0, cioè $\theta=0$

Irraggiamento: ampiezza unificata

Per $\omega \ll E$ vale il teorema di [Weinberg '65]:

$$M_{\text{soft}} \simeq M_{\text{el}} \times J_W^{\mu\nu}(\mathbf{k}) \epsilon_{\mu\nu}^{(+)} = \kappa^3 s \frac{1 - e^{2i(\phi_{\theta} - \phi_{\theta} - \theta_s)}}{E^2 \theta_s^2}$$
$$= \kappa^3 s \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{(\mathbf{k} - \frac{\omega}{E} \mathbf{q}) \mathbf{k}^* \mathbf{q} \mathbf{q}^*} \quad \begin{cases} \mathbf{k} &= \omega \mathbf{\theta} \\ \mathbf{q} &= \mathbf{p}_1' = E \theta_s \end{cases}$$



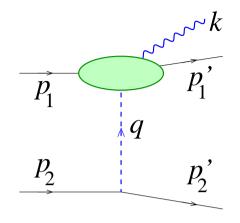
valido se $|\mathbf{k}| \ll |\mathbf{q}| \iff \omega \theta \ll E \theta_s$

Non ci sono singolarità collineari né a $\theta=0$ (k=0) né a $\theta=\theta_s$ ($k=\frac{\omega}{E}q$)

Irraggiamento: ampiezza unificata

Per $\omega \ll E$ vale il teorema di [Weinberg '65]:

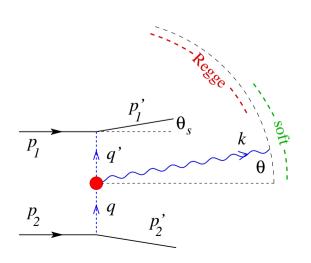
$$M_{\text{soft}} \simeq M_{\text{el}} \times J_W^{\mu\nu}(\mathbf{k}) \epsilon_{\mu\nu}^{(+)} = \kappa^3 s \frac{1 - e^{2i(\phi_{\theta} - \phi_{\theta - \theta_s})}}{E^2 \theta_s^2}$$
$$= \kappa^3 s \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{(\mathbf{k} - \frac{\omega}{E} \mathbf{q}) \mathbf{k}^* \mathbf{q} \mathbf{q}^*} \begin{cases} \mathbf{k} &= \omega \theta \\ \mathbf{q} &= \mathbf{p}_1' = E \theta_s \end{cases}$$



valido se $|\mathbf{k}| \ll |\mathbf{q}| \iff \omega \theta \ll E \theta_s$

Non ci sono singolarità collineari né a $\theta=0$ (k=0) né a $\theta=\theta_s$ ($k=\frac{\omega}{E}q$)

Radiazione di gravitoni ad energie estreme



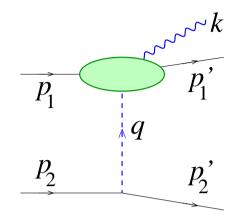
$$\frac{M_{\text{Regge}}}{\kappa^3 s} = \frac{\boldsymbol{k}^* \boldsymbol{q} - \boldsymbol{k} \boldsymbol{q}^*}{\boldsymbol{k} \boldsymbol{k}^* \boldsymbol{q} \boldsymbol{q}'^*}$$

$$\frac{M_{\text{soft}}}{\kappa^3 s} = \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{(\mathbf{k} - \frac{\omega}{E} \mathbf{q}) \mathbf{k}^* \mathbf{q} \mathbf{q}^*}$$

Irraggiamento: ampiezza unificata

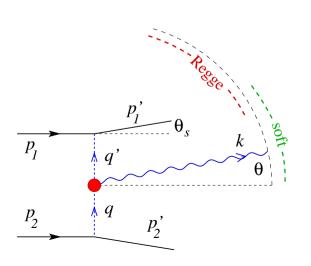
Per $\omega \ll E$ vale il teorema di [Weinberg '65]:

$$M_{\text{soft}} \simeq M_{\text{el}} \times J_W^{\mu\nu}(\mathbf{k}) \epsilon_{\mu\nu}^{(+)} = \kappa^3 s \frac{1 - e^{2i(\phi_{\theta} - \phi_{\theta} - \theta_s)}}{E^2 \theta_s^2}$$
$$= \kappa^3 s \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{(\mathbf{k} - \frac{\omega}{E} \mathbf{q}) \mathbf{k}^* \mathbf{q} \mathbf{q}^*} \quad \begin{cases} \mathbf{k} &= \omega \mathbf{\theta} \\ \mathbf{q} &= \mathbf{p}_1' = E \mathbf{\theta}_s \end{cases}$$



valido se $|\mathbf{k}| \ll |\mathbf{q}| \iff \omega \theta \ll E \theta_s$

Non ci sono singolarità collineari né a $\theta=0$ (k=0) né a $\theta=\theta_s$ ($k=\frac{\omega}{E}q$)



$$\frac{M_{\text{Regge}}}{\kappa^3 s} = \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{\mathbf{k} \mathbf{k}^* \mathbf{q} \mathbf{q}'^*}$$

$$\frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{(\mathbf{k} - \frac{\omega}{E} \mathbf{q}) \mathbf{k}^* \mathbf{q} \mathbf{q}'^*} = \frac{M_{\text{match}}}{\kappa^3 s}$$

$$\frac{M_{\text{soft}}}{\kappa^3 s} = \frac{\mathbf{k}^* \mathbf{q} - \mathbf{k} \mathbf{q}^*}{(\mathbf{k} - \frac{\omega}{E} \mathbf{q}) \mathbf{k}^* \mathbf{q} \mathbf{q}^*}$$

Campi metrici (parte 1)

Da $M_{\rm match}$ definiamo 2 campi: $h_{\rm Regge}$ e $h_{\rm soft}$

$$M_{\mathrm{match}}(\boldsymbol{q}, \boldsymbol{k}) \quad \xrightarrow{\mathrm{TdF}} \quad M_{\mathrm{match}}(\boldsymbol{b}, \boldsymbol{x})$$

ampiezza di probabilità di trovare un gravitone in posizione trasversa \boldsymbol{x} in una collisione con param. impatto \boldsymbol{b} .

Campi metrici (parte 1)

Da $M_{\rm match}$ definiamo 2 campi: $h_{\rm Regge}$ e $h_{\rm soft}$

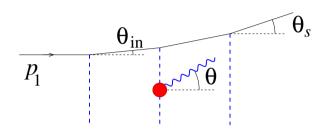
$$M_{\mathrm{match}}(\boldsymbol{q}, \boldsymbol{k}) \quad \xrightarrow{\mathrm{TdF}} \quad M_{\mathrm{match}}(\boldsymbol{b}, \boldsymbol{x})$$

ampiezza di probabilità di trovare un gravitone in posizione trasversa x in una collisione con param. impatto b.

Nel limite classico $\frac{\hbar\omega}{E}\to 0$ esso corrisponde alla perturbazione alla metrica in x: $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$

$$egin{aligned} h_{11} + h_{22} &= \Re \lim_{rac{\hbar \omega}{E} o 0} \kappa M_{ ext{match}}(oldsymbol{b}, oldsymbol{x}) \ &= rac{R^2}{|oldsymbol{b}|^2} \Re rac{oldsymbol{x} oldsymbol{b}^* - oldsymbol{x}^* oldsymbol{b}}{oldsymbol{x} (oldsymbol{x} - oldsymbol{b})^*} \equiv \Re \kappa M_{ ext{Regge}}(oldsymbol{b}, oldsymbol{x})!! \ &= h_{ ext{Regge}}|_{ACV} \end{aligned}$$

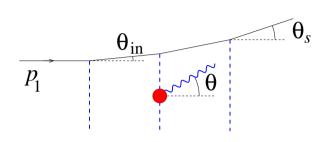
Ma h_{Regge} non è il campo coinvolto nella risommazione dei diagrammi



- Particella entrante ha direzione generica $\theta_{\rm in} \neq 0$
- Ampiezza corrispondente legata da una rotazione

$$M(\boldsymbol{\theta}_{\rm in}, \boldsymbol{\theta}) = e^{2i\phi_{\boldsymbol{\theta}}} M(\mathbf{0}, \boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}) e^{-2i\phi_{\boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}}}$$

Ma h_{Regge} non è il campo coinvolto nella risommazione dei diagrammi



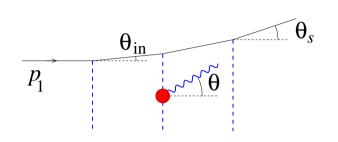
- Particella entrante ha direzione generica $\theta_{\rm in} \neq 0$
- Ampiezza corrispondente legata da una rotazione

$$M(\boldsymbol{\theta}_{\rm in}, \boldsymbol{\theta}) = e^{2i\phi_{\boldsymbol{\theta}}} M(\mathbf{0}, \boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}) e^{-2i\phi_{\boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}}}$$

Conseguenze

- Fisica: ampiezze interfiscono costruttivamente solo se $\theta \gg \theta_{\rm in} \simeq \theta_s$
- Matematica: la struttura di convoluzione è rovinata . . .

Ma h_{Regge} non è il campo coinvolto nella risommazione dei diagrammi



- Particella entrante ha direzione generica $\theta_{\rm in} \neq 0$
- Ampiezza corrispondente legata da una rotazione

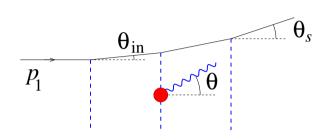
$$M(\boldsymbol{\theta}_{\rm in}, \boldsymbol{\theta}) = e^{2i\phi_{\boldsymbol{\theta}}} M(\mathbf{0}, \boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}) e^{-2i\phi_{\boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}}}$$

Conseguenze

- Fisica: ampiezze interfiscono costruttivamente solo se $\theta \gg \theta_{\rm in} \simeq \theta_s$
- Matematica: la struttura di convoluzione è rovinata ...

Convoluzione ristabilita in termini di $h_{\rm soft}(\boldsymbol{q}, \boldsymbol{k}) \equiv \mathrm{e}^{-2\mathrm{i}\phi_{\boldsymbol{\theta}}} M_{\mathrm{match}} = \frac{\boldsymbol{k}^*}{\boldsymbol{k}} M_{\mathrm{match}}$

Ma h_{Regge} non è il campo coinvolto nella risommazione dei diagrammi



- Particella entrante ha direzione generica $\theta_{\rm in} \neq 0$
- Ampiezza corrispondente legata da una rotazione

$$M(\boldsymbol{\theta}_{\rm in}, \boldsymbol{\theta}) = e^{2i\phi_{\boldsymbol{\theta}}} M(\mathbf{0}, \boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}) e^{-2i\phi_{\boldsymbol{\theta} - \boldsymbol{\theta}_{\rm in}}}$$

Conseguenze

- Fisica: ampiezze interfiscono costruttivamente solo se $\theta \gg \theta_{\rm in} \simeq \theta_s$
- Matematica: la struttura di convoluzione è rovinata . . .

Convoluzione ristabilita in termini di $h_{\rm soft}(\boldsymbol{q}, \boldsymbol{k}) \equiv \mathrm{e}^{-2\mathrm{i}\phi_{\boldsymbol{\theta}}} M_{\mathrm{match}} = \frac{\boldsymbol{k}^*}{\boldsymbol{k}} M_{\mathrm{match}}$

$$M_{\text{tot}}(\boldsymbol{b}, \boldsymbol{k}) = e^{2i\delta_0(b)}\mathfrak{M}(\boldsymbol{b}, \boldsymbol{k})$$

$$h_{\text{soft}}(\boldsymbol{b}, \boldsymbol{x}) = \frac{\partial_{\boldsymbol{x}}}{\partial_{\boldsymbol{x}^*}} M_{\text{match}}$$

$$\mathfrak{M}(\boldsymbol{b}, \boldsymbol{k}) = e^{2i\phi_{\boldsymbol{\theta}}} \kappa^3 s \int d^2 \boldsymbol{x} \int_0^1 d\xi \ e^{i\omega \boldsymbol{x} \cdot (\boldsymbol{\theta} - \xi \boldsymbol{\Theta}_E)} h_{\text{soft}}(\boldsymbol{b}, \boldsymbol{x})$$

$$h_{\text{soft}} = \frac{1}{\boldsymbol{x}^2} \left[\frac{E}{\omega} \ln \left| \frac{\boldsymbol{b} - \frac{\omega}{E} \boldsymbol{x}}{\boldsymbol{b}} \right| - (E \to \omega) \right] \equiv M_{\text{soft}}(\boldsymbol{b}, \boldsymbol{x}; E) - (E \to \omega)$$

Campi metrici (parte 2)

Ricordiamo che
$$\lim_{\frac{\hbar\omega}{E}\to 0} M_{\mathrm{match}}(\boldsymbol{b},\boldsymbol{x}) = h_{\mathrm{Regge}} = h_{11} + h_{22}$$

Da
$$h_{
m soft}(m{q},m{k}) \equiv rac{m{k}^*}{m{k}} M_{
m match}$$
 \Rightarrow $\partial_{m{x}} h_{
m soft}(m{b},m{x}) = \partial_{m{x}^*} M_{
m match}$

 $h_{\text{soft}}(\boldsymbol{b}, \boldsymbol{x})$ ha qualcosa a che fare con il campo metrico?

Campi metrici (parte 2)

Ricordiamo che
$$\lim_{\frac{\hbar\omega}{E}\to 0} M_{\mathrm{match}}(\boldsymbol{b},\boldsymbol{x}) = h_{\mathrm{Regge}} = h_{11} + h_{22}$$

Da
$$h_{
m soft}(m{q},m{k}) \equiv rac{m{k}^*}{m{k}} M_{
m match}$$
 \Rightarrow $\partial_{m{x}} h_{
m soft}(m{b},m{x}) = \partial_{m{x}^*} M_{
m match}$

 $h_{\rm soft}(\boldsymbol{b},\boldsymbol{x})$ ha qualcosa a che fare con il campo metrico?

Sì:
$$\lim_{\frac{\hbar\omega}{E}\to 0} h_{\text{soft}}(\boldsymbol{b}, \boldsymbol{x}) = h_{11} - h_{22} - 2\mathrm{i}h_{12} = \frac{\partial_{\boldsymbol{x}^*}}{\partial_{\boldsymbol{x}}} h_{\text{Regge}}$$

equivalente alla condizione di trasversalità $\frac{\partial}{\partial x_i} h_{ij} = 0$, (i, j = 1, 2)

Campi metrici (parte 2)

Ricordiamo che
$$\lim_{\frac{\hbar\omega}{E}\to 0} M_{\mathrm{match}}(\boldsymbol{b},\boldsymbol{x}) = h_{\mathrm{Regge}} = h_{11} + h_{22}$$

Da
$$h_{
m soft}(m{q},m{k}) \equiv rac{m{k}^*}{m{k}} M_{
m match}$$
 \Rightarrow $\partial_{m{x}} h_{
m soft}(m{b},m{x}) = \partial_{m{x}^*} M_{
m match}$

 $h_{\rm soft}(\boldsymbol{b},\boldsymbol{x})$ ha qualcosa a che fare con il campo metrico?

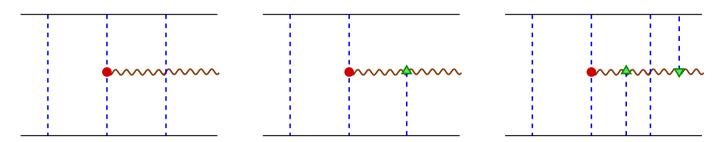
Sì:
$$\lim_{\frac{\hbar\omega}{E}\to 0} h_{\rm soft}(\boldsymbol{b},\boldsymbol{x}) = h_{11} - h_{22} - 2\mathrm{i}h_{12} = \frac{\partial_{\boldsymbol{x}^*}}{\partial_{\boldsymbol{x}}} h_{\rm Regge}$$

equivalente alla condizione di trasversalità $\frac{\partial}{\partial x_i} h_{ij} = 0$, (i, j = 1, 2)

- In gravità il campo di Regge ed il campo soffice sono intimamente legati assieme
- La natura di spin-2 del gravitone ci permette di trovare un'unica forma limite che descrive sia la cinematica di Regge che il limite soffice

Re-interazioni

Ulteriore sorpresa: se risommiamo anche i diagrammi di re-interazione



il campo soffice esponenzia:

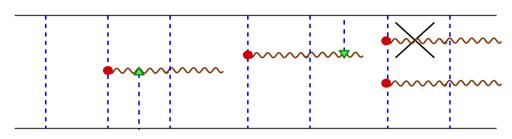
$$h_{\text{soft}} = \frac{1}{\boldsymbol{x}^2} \left[\frac{E}{\omega} \log \left| \frac{\boldsymbol{b} - \frac{\omega}{E} \boldsymbol{x}}{\boldsymbol{b}} \right| - \log \left| \frac{\boldsymbol{b} - \boldsymbol{x}}{\boldsymbol{b}} \right| \right] \equiv \frac{1}{\boldsymbol{x}^2} \Phi(\boldsymbol{b}, \boldsymbol{x})$$
$$\frac{M_{\text{tot}}}{e^{2i\delta_0(b)}} \equiv \mathfrak{M} = \frac{e^{2i\phi_{\boldsymbol{\theta}}}}{i2\omega R} \int d^2 \boldsymbol{x} \ e^{i\omega(\boldsymbol{\theta} - \boldsymbol{\Theta}_E) \cdot \boldsymbol{x}} \ \frac{e^{i2\omega R\Phi} - 1}{\boldsymbol{x}^2}$$

- Il denominatore $1/x^2$ corrisponde al tensore di Riemann dell'onda d'urto gravitazionale generata da una delle particelle entranti [Aichelburg-Sexl '71]
- I campi di radiazione sono generati dalla collisione dei due fronti d'onda

Radiazione di gravitoni ad energie estreme

Emissioni multiple

Emissione di molti gravitoni (senza correlazioni) può essere risommata in forma chiusa:

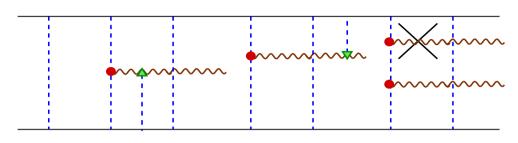


$$M_{\mathrm{tot}}(2 \to 2 + \boldsymbol{k}_1 \cdots \boldsymbol{k}_n) \equiv \mathrm{e}^{2\mathrm{i}\delta_0(b)} \frac{1}{n!} \mathfrak{M}(\boldsymbol{k}_1) \cdots \mathfrak{M}(\boldsymbol{k}_n)$$

$$|\text{gravitoni}\rangle = e^{2i\delta_0(b)} \exp \left\{ i \sum_{\lambda=\pm} \int \frac{d^3k}{2\omega_k} \mathfrak{M}^{(\lambda)}(k) a^{(\lambda)\dagger}(k) + \text{h.c.} \right\} |0\rangle$$

Emissioni multiple

Emissione di molti gravitoni (senza correlazioni) può essere risommata in forma chiusa:



$$M_{\text{tot}}(2 \to 2 + \boldsymbol{k}_1 \cdots \boldsymbol{k}_n) \equiv e^{2i\delta_0(b)} \frac{1}{n!} \mathfrak{M}(\boldsymbol{k}_1) \cdots \mathfrak{M}(\boldsymbol{k}_n)$$

$$|\text{gravitoni}\rangle = e^{2i\delta_0(b)} \exp \left\{ i \sum_{\lambda=\pm} \int \frac{d^3k}{2\omega_k} \mathfrak{M}^{(\lambda)}(k) a^{(\lambda)\dagger}(k) + \text{h.c.} \right\} |0\rangle$$

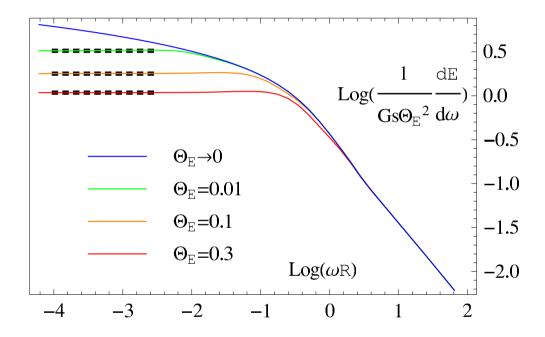
Lo spettro e altri osservabili si calcolano explicitamente

$$\frac{\mathrm{d}E^{\mathrm{GW}}}{\mathrm{d}\omega} = \frac{2Gs\,\theta_E^2\,b^2}{\pi^2} \int \frac{\mathrm{d}^2\boldsymbol{x}}{|\boldsymbol{x}|^4} \left(\frac{\sin\omega R\Phi(\boldsymbol{x})}{\omega R}\right)^2$$

in accordo con [Gruzinov, Veneziano 2015] per $\hbar\omega/E o 0$

Spettro

$$\frac{\mathrm{d}E^{\mathrm{GW}}}{\mathrm{d}\omega} = \frac{2Gs\,\theta_E^2\,b^2}{\pi^2} \int \frac{\mathrm{d}^2\boldsymbol{x}}{|\boldsymbol{x}|^4} \left(\frac{\sin\omega R\Phi(\boldsymbol{x})}{\omega R}\right)^2 \xrightarrow[\omega R\gg 1]{} Gs\,\theta_E^2 \frac{4}{3} (1 - \log 2) \frac{1}{\omega R}$$

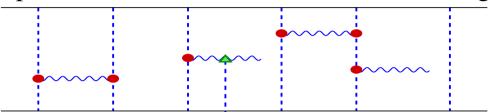


- In accordo con il limite di frequenza zero ($\omega \to 0$)
- Frequenza caratteristica $\langle \omega \rangle \sim 1/R$ quasi indipendente da b, cioè, da θ_E
- $\langle \omega \rangle$ decresce al crescere di E, come la radiazione di Hawking

Verso $oldsymbol{b} o oldsymbol{R}$

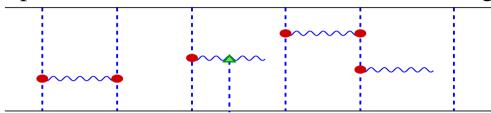
I precedenti risultati sono validi se $b\gg R$, cioè, $\Theta_E\ll 1$

Investigare l'emissione per $b \sim R$ richiede di tenere in conto i diagrammi multi-H

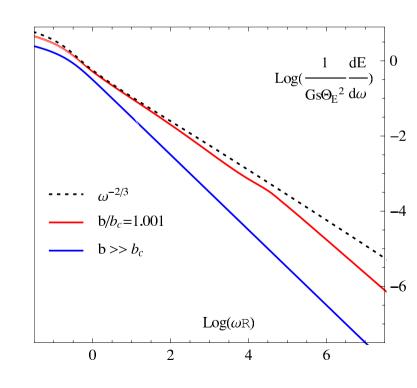


Verso b o R

I precedenti risultati sono validi se $b\gg R$, cioè, $\Theta_E\ll 1$ Investigare l'emissione per $b\sim R$ richiede di tenere in conto i diagrammi multi-H

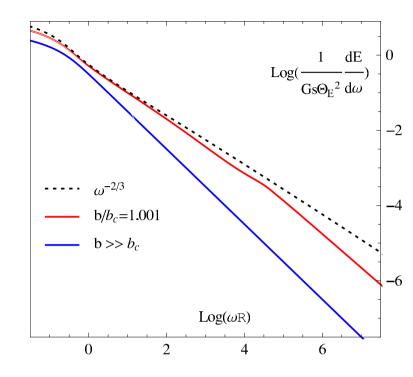


- Abbiamo dimostrato che una formula di fattorizzazione simile vale, rimpiazzando $\delta_0(b) \rightarrow \delta(b)$, lo sfasamento che ha il punto critico a $b_c = 1.6R$
- Il comportamento non-analitico di $\delta(b \to b_c^+)$ modifica profondamente lo spettro d'energia
- In una regione intermedia sempre più estesa per $b \to b_c^+$ si verifica un incremento dell'emissione $\sim \omega^{-2/3}$ invece che $\sim \omega^{-1}$



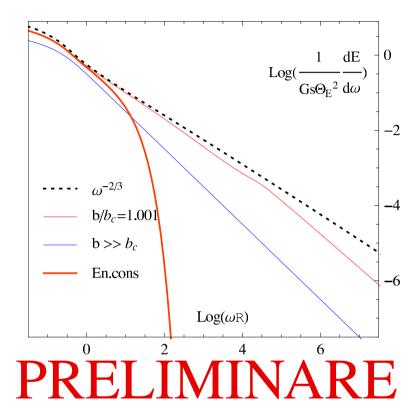
Conservazione dell'energia

- Per $b \gg b_c$ lo spettro decade come ω^{-1}
- Comportamento non-analitico di $\delta(b \to b_c)$ accentua l'emissione $\sim \omega^{-2/3}$ per ω intermedi



Conservazione dell'energia

- Per $b \gg b_c$ lo spettro decade come ω^{-1}
- Comportamento non-analitico di $\delta(b \to b_c)$ accentua l'emissione $\sim \omega^{-2/3}$ per ω intermedi



Importante imporre la conservazione dell'energia

$$\frac{\mathrm{d}P_n}{\mathrm{d}q_1\cdots\mathrm{d}q_n} \propto |M(q_1)\cdots M(q_n)|^2 \quad \Theta\left(\sqrt{s} - \hbar(\omega_1 + \cdots + \omega_n)\right)$$

$$\frac{\mathrm{d}E^{\mathrm{GW}}}{\mathrm{d}\omega}\Big|_{\mathrm{cons}} \simeq \frac{\mathrm{d}E^{\mathrm{GW}}}{\mathrm{d}\omega}\Big|_0 \times \mathrm{e}^{-\hbar\omega/\tau} \qquad (\tau \stackrel{b\to b_c}{\sim} \frac{\hbar}{R} = k_B T_{\mathrm{Hawking}})$$

Conclusioni

- Siamo in gradi di calcolare la radiazione di gravitoni nelle collisioni transplanckiane (per ora trascurando le correlazioni)
 - Determinata un'ampiezza di emissione unificata
 - Risolto il problema della crisi dell'energia: spettro $\sim 1/\omega$ per $\omega > 1/R$.
 - Finalmente si vede il ruolo del raggio gravitazionale $R^{-1}=\langle\omega\rangle$ nello spettro, come nella radiazione di Hawking
- Gli effetti non lineari delle correzioni sottodominanti provocano per $b \simeq R$ un incremento dell'emissione $\sim \omega^{-2/3}$ per ω intermedi
- Imponendo la conservazione dell'energia
 - lo spettro sembra soppresso esponenzialmente
 - come una radiazione termica (ma qui la radiazione è corente)
 - lacksquare per $b o b_c$ la "temperatura" diventa quella di Hawking