XIV International Workshop on Hadron Structure and Spectroscopy Cortona (Italy), 2 - 5 April 2017

Overview of the future programs at JLAB and EIC

Jianwei Qiu Theory Center, Jefferson Lab

Jefferson Lab 12 GeV Upgrade Project

JLab 12 GeV Scientific Capabilities

Hall D – exploring origin of confinement by studying exotic mesons

Hall B – understanding nucleon structure via generalized parton distributions

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall A – form factors, future new experiments (e.g., SoLID and MOLLER)

Outline of the rest of my talk

- □ The next QCD frontier the "big" questions, ...
- □ JLAB12 and the Electron-Ion Collider (EIC)
- □ How JLAB12/EIC could answer the "big" questions?
- □ Path forward to the EIC era unique role of JLAB12
- □ Summary

□ What is the role of QCD in the evolution of the universe?

□ How hadrons are emerged from quarks and gluons?

How does QCD make up the properties of hadrons? Their mass, spin, magnetic moment, ...

□ What is the QCD landscape of nucleon and nuclei?

□ Understanding the glue – the Next QCD Frontier!

Gluons are weird particles!

$\diamond\,$ Massless, yet, responsible for nearly all visible mass

"Mass without mass!"

□ Understanding the glue that binds us all – the Next QCD Frontier!

Gluons are weird particles!

- $\diamond\,$ Massless, yet, responsible for nearly all visible mass
- $\diamond\,$ Carry color charge, responsible for color confinement and strong force

Heavy quarks experience a force of ~16 tons at ~1 Fermi (10⁻¹⁵ m) distance

□ Understanding the glue that binds us all – the Next QCD Frontier!

Gluons are weird particles!

- ♦ Massless, yet, responsible for nearly all visible mass
- $\diamond\,$ Carry color charge, responsible for color confinement and strong force

but, also for asymptotic freedom

Nobel Prize, 2004
QCD perturbation theory

□ Understanding the glue that binds us all – the Next QCD Frontier!

Gluons are weird particles!

- ♦ Massless, yet, responsible for nearly all visible mass
- ♦ Carry color charge, responsible for color confinement and strong force
 but, also for asymptotic freedom,
 as well as the abundance of glue
 ♦ 4.0
 CTEQ 6.5 parton
 distribution functions
 Q² = 10 GeV²

□ Understanding the glue that binds us all – the Next QCD Frontier!

Gluons are weird particles!

- \diamond Massless, yet, responsible for nearly all visible mass
- ♦ Carry color charge, responsible for color confinement and strong force

but, also for asymptotic freedom, as well as the abundance of glue

Without gluons, there would be NO nucleons, NO atomic nuclei... NO visible world!

Unprecedented Intellectual Challenge!

□ Facts:

- We measure/detect leptons and hadrons
- No modern detector has been able to see quarks and gluons in isolation!

□ The challenge:

How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?

□ Answer to the challenge:

Theory advances:

QCD factorization – matching the quarks/gluons to hadrons with controllable approximations!

Experimental breakthroughs:

Energy, luminosity and measurement – Unprecedented resolution, event rates, and precision probes, especially EM probes, ...

Quarks – Need the probe to "see" their existence, ...Gluons – Varying the probe's resolution to "see" their effect, ...Jets – Footprints of energetic quarks and gluons

QCD factorization is an approximation

Cross section with identified hadron(s) is NON-Perturbative!

Approximation – Leading power/twist factorization!

or in input PDFs!

How to "see" and quantify the hadron structure?

1/Q

Collision by photon exchange with a large momentum transfer: **Q**

e.g. Photon momentum: $q^2 = -Q^2$ in DIS

Resolution:

1/Q ~ 1/10 fermi = 10⁻¹⁴ cm = 2 GeV⁻¹ Breit frame (Brick-Wall frame) in DIS:

Resolution in Breit frame:

High energy: boosted partonic structure

JLAB12 & the Electron-Ion Collider (EIC)

 $\gamma^*, Z^0, ...$

"see" the non-linear dvnamics of the alue!

□ A giant "Microscope":

- "see" quarks/gluons and their dynamics by breaking the hadron

p

e

- "imagine" the quark/gluon structure without breaking the hadron
- "cat-scan" the nucleon and nuclei with better than 1/10 fm resolution
- "see" the proton "radius" of quark/gluon density
- "explore" the range of color force

JLAB – Valence region EIC – Sea & gluons

1/Q

< 1/10 fm

Many complementary probes at one facility

High energy and luminosity Lepton-hadron facility:

 $Q^2 \rightarrow Measure of resolution$

- $\mathbf{y} \rightarrow \mathbf{M}$ easure of inelasticity
- X → Measure of momentum fraction of the struck quark in a proton
 Q² = S x y

Inclusive events: $e+p/A \rightarrow e'+X$ Detect only the scattered lepton in the detector

Semi-Inclusive events: $e+p/A \rightarrow e'+h(\pi,K,p,jet)+X$ Detect the scattered lepton in coincidence with identified hadrons/jets

Exclusive events: $e+p/A \rightarrow e'+p'/A'+h(\pi,K,p,jet)$

Detect every things including scattered proton/nucleus (or its fragments)

□ How does QCD generate the nucleon mass?

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quark-antiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ..." The 2015 Long Range Plan for Nuclear Science

Hadron mass from Lattice QCD calculation:

How does QCD generate this? The role of quarks vs that of gluons? If we do not understand proton mass, we do not understand QCD

Three-pronged approach to explore the origin of hadron mass

- ♦ Lattice QCD
- ♦ Mass decomposition roles of the constituents
- ♦ Model calculation approximated analytical approach

The Proton Mass

At the heart of most visible matter. Temple University, March 28-29, 2016

https://phys.cst.temple.edu/meziani/proton-mass-workshop-2016/

Philadelphia, Pennsylvania

□ Three-pronged approach to explore the origin of hadron mass

- ♦ Lattice QCD
- ♦ Mass decomposition roles of the constituents
- ♦ Model calculation approximated analytical approach

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS TRENTO, ITALY Institutional Member of the European Expert Committee NUPECC

> stituto Nazionale li Fisica Nucleare

Castello di Trento ("Trint"), watercolor 19.8 x 27.7, painted by A. Dürer on his way back from Venice (1495). British Museum, London

The Proton Mass: At the Heart of Most Visible Matter

Trento, April 3 - 7, 2017

http://www.ectstar.eu/node/2218

□ How does QCD generate the nucleon mass?

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quark-antiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ..." The 2015 Long Range Plan for Nuclear Science

□ Role of quarks and gluons?

 \diamond

♦ QCD energy-momentum tensor:

$$T^{\mu\nu} = \frac{1}{2} \overline{\psi} i \vec{D}^{(\mu} \gamma^{\nu)} \psi + \frac{1}{4} g^{\mu\nu} F^2 - F^{\mu\alpha} F^{\nu}{}_{a}$$

♦ Trace of the QCD energy-momentum tensor:

$$T^{\alpha}_{\alpha} = \frac{\beta(g)}{2g} F^{\mu\nu,a} F^{a}_{\mu\nu} + \sum_{\substack{q=u,d,s}} m_q (1+\gamma_m) \overline{\psi}_q \psi_q$$
QCD trace anomaly $\beta(g) = -(11-2n_f/3) g^3/(4\pi)^2 + \dots$
Mass, trace anomaly, chiral symmetry break, and \dots
 $\langle p | T^{\mu\nu} | p \rangle \propto p^{\mu} p^{\nu} \longrightarrow \langle p | T^{\mu\nu} | p \rangle (g_{\mu\nu}) \propto p^{\mu} p^{\nu} (g_{\mu\nu}) = m^2 \gamma^*$
 $m^2 \propto \langle p | T^{\alpha}_{\alpha} | p \rangle \longrightarrow \frac{\beta(g)}{2g} \langle p | F^2 | p \rangle$
Heavy guarkonium production near the threshold, from JLab12 to EIC

If we do not understand proton spin, we do not understand QCD

□ What can JLab12 and EIC do?

New role of the lattice calculations

Lattice QCD X-dep distributions New ideas – from quasi-PDFs (lattice calculable) to PDFs:

 \diamond High P_z effective field theory approach:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

Ji, et al., arXiv:1305.1539 1404.6680

♦ QCD collinear factorization approach:

$$\tilde{q}(x,\mu^2,P_z) = \sum_f \int_0^1 \frac{dy}{y} \ \mathcal{C}_f\left(\frac{x}{y},\frac{\mu^2}{\bar{\mu}^2},P_z\right) f(y,\bar{\mu}^2) + \mathcal{O}\left(\frac{1}{\mu^2}\right)$$

Non-perturbative lattice UV renormalization: Effective mass renormalization, Gradient flow, ... Ma and Qiu, arXiv:1404.6860 1412.2688 Ishikawa, Ma, Qiu, Yoshida, 1609.02018 Monohan, Orginos, 1612.01584

□ The TMD Collaboration + on-going effort around the world! *Plus the intense JLab and world-wide theory effort!*

New role of the lattice calculations

Lattice QCD X-dep distributions

 \diamond High P_z effective field theory approach:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

Ji, et al., arXiv:1305.1539 1404.6680

Ma and Qiu.

. . .

♦ QCD collinear factorization approach:

$$\tilde{q}(x,\mu^2,P_z) = \sum_f \int_0^1 \frac{dy}{y} \ \mathcal{C}_f\left(\frac{x}{y},\frac{\mu^2}{\bar{\mu}^2},P_z\right) f(y,\bar{\mu}^2) + \mathcal{O}\left(\frac{1}{\mu^2}\right)$$

Non-perturbative lattice UV renormalization: Effective mass renormalization, Gradient flow, ... arXiv:1404.6860 1412.2688 Ishikawa, Ma, Qiu, Yoshida, 1609.02018 Monohan, Orginos, 1612.01584

□ Tremendous potentials!

PDFs of proton, neutron, pion, ...; TMDs, GPDs, ...; JLab12 expts

□ How does QCD generate the nucleon's spin? $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + (L_q + L_g)$ Proton Spin

> *To understand the proton spin, fully, we need to understand the confined motion of quarks and gluons in QCD*

Need "probes" for two-scale observables!

Two-momentum-scale observables

 $xp_{\star}k_{\rm T}$

Х

□ Cross sections with two-momentum scales observed: $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{ m QCD}$

 \diamond "Soft" scale: Q_2 could be more sensitive to hadron structure, e.g., confined motion

Two-scale observables with the hadron broken:

A Natural observables with TWO very different scales

TMD factorization: partons' confined motion is encoded into TMDs

Two-momentum-scale observables

 xp_k_T

Х

□ Cross sections with two-momentum scales observed: $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{ m QCD}$

Two-scale observables with the hadron unbroken:

♦ Natural observables with TWO very different scales

 \diamond GPDs: Fourier Transform of t-dependence gives spatial b_T-dependence

□ 3D boosted partonic structure:

JLab12 – valence quarks, EIC – sea quarks and gluons

TMDs: confined motion, its spin correlation

□ Power of spin – many more correlations:

SIDIS is the best for probing TMDs

□ Naturally, two scales & two planes:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

□ Separation of TMDs:

Hard, if not impossible, to separate TMDs in hadronic collisions

Using a combination of different observables (not the same observable): jet, identified hadron, photon, ...

TMD Topical Theory Collaboration

Coordinated Theoretical Approach to Transverse Momentum Dependent Hadron Structure in QCD (TMD Collaboration)

Co-spokespersons: W. Detmold, J.W. Qiu

TMD Topical Theory Collaboration

□ Objectives/Deliverables – 3D Confined Motion:

Unique three pronged scientific effort: (1) theory, (2) phenomenology and (3) lattice QCD, to explore 3D hadron structure – 3D confined motion!

- Matching x-section to parton motion
 QCD factorization
- \diamond Parton motion vs. probing scale
 - QCD quantum evolution
 - RHIC Run17 W program
- Lattice QCD calculation of TMDs
 QCD 1st principle prediction?
- Fast software to extract TMDs
 Service to community
- ♦ JLab12 data, …

Density distribution of an unpolarized quark in a proton moving in z direction and polarized in y-direction

Why 3D nucleon structure?

□ Rutherford's experiment – atomic structure (100 years ago):

□ Completely changed our "view" of the visible world:

- ♦ Mass by "tiny" nuclei less than 1 trillionth in volume of an atom
- A Motion by quantum probability the quantum world!

3D nucleon/nuclear structure:

♦ Distribution and motion of quarks and gluons – confining mechanism?

Why 3D nucleon structure?

□ Spatial distributions of quarks and gluons:

Bag Model:

Gluon field distribution is wider than the fast moving quarks. Gluon radius > Charge Radius

Constituent Quark Model:

Gluons and sea quarks hide inside massive quarks.

Gluon radius ~ Charge Radius

Lattice Gauge theory (with slow moving quarks):

Gluons more concentrated inside the quarks

Gluon radius < Charge Radius

3D Confined Motion (TMDs) + Spatial Distribution (GPDs)

Relation between charge radius, quark radius (x), and gluon radius (x)?

Run away gluon density at small x?

QCD vs. QED:

QCD – gluon in a proton: $Q^2 \frac{d}{dQ^2} x G(x, Q^2) \approx \frac{\alpha_s N_c}{\pi} \int_{-\infty}^{1} \frac{dx'}{x'} x' G(x', Q^2) \stackrel{\diamond}{\to} \text{At very small-x, proton is "black", positronium is still transparent!}$ QED – photon in a positronium:

$$Q^{2} \frac{d}{dQ^{2}} x \phi_{\gamma}(x, Q^{2}) \approx \frac{\alpha_{em}}{\pi} \left[-\frac{2}{3} x \phi_{\gamma}(x, Q^{2}) + \int_{x}^{1} \frac{dx'}{x'} x' [\phi_{e^{+}}(x', Q^{2}) + \phi_{e^{-}}(x', Q^{2})] \right]$$

What causes the low-x rise?

- gluon radiation
- non-linear gluon interaction

What tames the low-x rise? gluon recombination

non-linear gluon interaction

♦ Recombination of large numbers of glue could lead to saturation phenomena

Run away gluon density at small x?

Particle vs. wave feature:

What causes the low-x rise?

- gluon radiation
- non-linear gluon interaction

What tames the low-x rise?

- gluon recombination
- non-linear gluon interaction

Gluon saturation – Color Glass Condensate Radiation = Recombination

with a universal property of QCD? new effective theory QCD – CGC?

Expectation: $x=10^{-5}$ in a proton at $Q^2=5$ GeV²

DIS on a large nucleus

□ If we only see quarks and gluons, ...

- If color is localized inside the nucleon, using a large nucleus does not change gluon dynamics inside nucleon
 - no advantage for seeing the gluon saturation,
 - but, provides an opportunity to study QCD multiple scattering
- If color leaks outside of the nucleon inside a large nucleus, color interaction between nucleons modifies the nuclear landscape
 - large nucleus could have an advantage for discovering the universal properties of the gluon saturation "earlier"

DIS on a large nucleus

Ratio of F₂: Shadowing vs. Saturation

□ A simple question:

Will the suppression/shadowing continue to fall as x decreases?

Ratio of F₂: Shadowing vs. Saturation

The EIC Users Group: EICUG.ORG

South America

2%

2%

Oceania

1%

(no students included as of yet)

Registration opening by April 30

INFN

EICUG MEETING – July 18-22 TRIESTE

UNIVERSITÀ DEGLI STUDI DI TRIESTE

eicug2017.ts.infn.it

Summary

EIC is a ultimate QCD machine:

- 1) to discover and explore the quark/gluon structure and properties of hadrons and nuclei,
- 2) to search for hints and clues of color confinement, and
- 3) to measure the color fluctuation and color neutralization
- □ JLAB/EIC are tomographic machines for nucleons and nuclei with a resolution better than 1/10 fm
- □ EIC designs explore the polarization and intensity frontier, as well as the frontier of new accelerator/detector technology
- □ JLAB12 is a prerequisite of the full EIC program, in addition to its own rich physics program
- EIC@US is sitting at a sweet spot for rich QCD dynamics
 capable of taking us to the next QCD frontier

Thanks!

US EIC – Kinematic reach & properties

For e-A collisions at the EIC:

- \checkmark Wide range in nuclei
- ✓ Variable center of mass energy
- ✓ Wide Q² range (evolution)
- ✓ Wide x region (high gluon densities)

EIC explores the "sea" and the "glue", the "valence" with a huge level arm

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ Variable center of mass energy
- ✓ Wide Q^2 range → evolution
- ✓ Wide x range → spanning from valence to low-x physics
- 100-1K times of HERA Luminosity

