Drell-Yan Process: Most Recent Results and Open Issues

IWHSS 2017 @ Cortona, Italy 2017-April-04

Kenichi Nakano

Tokyo Tech

Outline

- 1. Drell-Yan process for studying nucleon structure
- 2. Drell-Yan Measurement @ SeaQuest
- 3. Physics topics (mostly related to SeaQuest)
 - $\circ~$ Flavor asymmetry of anti-quarks ($ar{d}(x)/ar{u}(x)$)
 - Parton energy loss in cold nuclear matter
 - Angular distribution (Boer-Mulders function?)
- 4. Summary

Drell-Yan for PDF Measurements

• Cross section of p + p D-Y @ LO

$$\begin{aligned} \frac{d^2\sigma}{dx_{Beam}dx_{Target}} &= \frac{4\pi\alpha^2}{9x_{Beam}x_{Target}} \frac{1}{s}\sum_i e_i^{\ 2} \cdot \\ & \left\{q_i(x_{Beam})\bar{q}_i(x_{Target}) + \bar{q}_i(x_{Beam})q_i(x_{Target})\right\}\end{aligned}$$

- \circ " $q_i(x_{Beam})$ $ar{q}_i(x_{Target})$ " survives @ forward rapidity
- $q \le x_{Beam} & \bar{q} \le \bar{q} \le x_{Target}$ are distinguishable event-by-event
- Specialty
 - \circ Sensitivity to $ar{q}$
 - Similarity to SIDIS
 - •• TMD sign change
 - •• Angular distribution
 - No strong interaction in final state (vs heavy-ion collision)

Drell-Yan Process: Most Recent Results and Open Issues

Physics Topics & Drell-Yan Experiments

Measurement of Drell-Yan Process @ SeaQuest

Drell-Yan Process: Most Recent Results and Open Issues

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - $^\circ~5~{\rm sec}$ for E906
 - 55 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec in spot size

Drell-Yan Process: Most Recent Results and Open Issues

E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

Status of SeaQuest Data Taking

Events

Year	Month	Event
2008	12	Fermilab Stage-2 approval
2011	08	End of spectrometer construction
2012	03-04	1st data taking (commissioning)
	05-	Detector & DAQ upgrade
2013	11-	2nd data taking (10 months)
2014	11-	3rd data taking (8 months)
2015	10-	4th data taking (10 months)
2016	11-	5th data taking

- Beam protons on targets
 - $\circ~1.1\times10^{18}$ recorded up to FY2016
 - $\circ~0.6 \times 10^{18}$ analyzed for preliminary \bar{d}/\bar{u}
- Data taking continues in FY2017
 - $^\circ~$ Another 0.4×10^{18} to be recorded (1.5 \times 10^{18} in total)
 - Wider chamber acceptance at St. 1
 - Faster DAQ
 - Smarter trigger logic

Anti-Quark Flavor Asymmetry: $ar{d}(x)/ar{u}(x)$

Drell-Yan Process: Most Recent Results and Open Issues

Past Measurements of Flavor Asymmetry

- Symmetric in gluon splitting ($g
 ightarrow u ar{u}$ or $d ar{d}$)
- CERN NMC ('90): deep inelastic muon scattering
 - $\circ~~{
 m Gottfried~Sum:}~S_G=0.2281(65)<1/3$
 - $\circ~\int \bar{d}(x) dx > \int \bar{u}(x) dx$... discovery of flavor asymmetry of anti-quarks in proton
- Measurement of x dependence of $\bar{u}(x)$ & $\bar{d}(x)$: Drell-Yan process
 - $\circ~$ CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Drell-Yan Process: Most Recent Results and Open Issues

Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between u & d (${\sim}2$ & 5 MeV) in $g
 ightarrow qar{q}$
 - $\circ~$ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... *PRD15*, 2590 (1977)
 - $\circ \ \textit{Prob}(g \rightarrow u \bar{u}) < \textit{Prob}(g \rightarrow d \bar{d}) \ \text{since} \ p = u u d$
 - Cannot explain the measured size ... NPB149, 497 (1979)
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)

- Lattice-QCD calculation with LaMET ... PRD91, 054510 (2015)
 - $\circ~$ As large as the measured size
 - Room to improve pion mass & lattice size

Drell-Yan Process: Most Recent Results and Open Issues

Theories of \bar{d}/\bar{u} Asymmetry (2)

- Statistical model ... NPA941, 307 (2015)
 - $\circ~$ Based on the Fermi & Bose statistics
 - Predicts $\bar{d}(x) \bar{u}(x) = \Delta \bar{u}(x) \Delta \bar{d}(x)$
- Meson cloud model ... PRD58, 092004 (1998)

$$\circ ~|p
angle = (1-a-b)|p_0
angle + a|N\pi
angle + b|\Delta\pi
angle$$

- More \overline{d} in π^+ as $|n\pi^+\rangle$ etc.
- Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
- Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L = 1 of π to make $J^P = 1/2^+$ of proton, as parity of π is $J^P = 0^-$)

Drell-Yan Process: Most Recent Results and Open Issues

Comparison of Theories to Measurements

• The x dependence of $\bar{d}(x)/\bar{u}(x)$ is the key to develope/examine models

• Drop sharply at $x \sim 0.3?$ Go down to $\bar{d} < \bar{u}?$

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Preliminary result with 6×10^{17} PoTs

- Systematic errors
 - Errors of cross-section ratio
 - Errors of CT10 PDF
 - $\circ \ ar{d}/ar{u}$ outside the measured x range
- $\bar{d}/\bar{u} > 1$ at high x also

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

Comparison with other measurements

- All agree at small x
- $\circ ~~ar{d}/ar{u}~{
 m at}~x\sim 0.3~{
 m seems}~{
 m higher}~{
 m by}~{
 m SeaQuest}$
 - ... Physical reasons for this difference are being investigated

Parton Energy Loss in Cold Nuclear Matter

Nuclear Effects in p + A Drell-Yan

- Modification of PDF inside nucleus A: $R_i^A(x) \equiv f_i^A(x)/f_i^p(x)$
 - $^{\circ}~$ Shadowing & anti-shadowing
 - EMC effect ... PLB 123, 275 (1983)
 - Fermi motion
- Interaction of parton in *p* going into nucleus
 - $\label{eq:parton energy loss (in cold nuclear matter)} \Leftrightarrow \mbox{In QGP at RHIC/LHC}$
- Measurement of $\hat{\sigma}^{p+A}(x)/\hat{\sigma}^{p+p}(x)$ with Drell-Yan
 - $^\circ~{\rm Result}$ of FNAL-E866 @ $E_{beam}=800~{\rm GeV},\,\sqrt{s}=39~{\rm GeV}$

- $\circ\circ~~$ Shadowing on $ar{q}\sim~$ parton energy loss on q
- •• Either alone can reproduce the measured size

x

Drell-Yan Process: Most Recent Results and Open Issues

Measurement by SeaQuest

- Measurement at smaller \sqrt{s} (= 15 GeV) & larger x ($\gtrsim 0.3$)
 - $^\circ~$ Shadowing gets smaller & parton energy loss gets larger by 1/s
 - $^{\circ}~$ Direct extraction of parton energy loss in cold nuclear matter

- Theory prediction: Change of *x* by parton energy loss
 - $\Delta x = -\kappa_1 x A^{1/3}$... Gavin & Milana (PRL68, 1834)
 - $\Delta x = -\frac{\kappa_2}{s} A^{1/3}$... Brodsky & Hoyer (PLB298, 165)
 - $\Delta x = -\frac{\kappa_2}{s} A^{2/3}$... Baier et al. (NPB531, 403)

 $\circ~$ Measure with several targets (A) to select the right model

- Plan to measure at small *x* to study shadowing etc.
- Plan to measure p_T broadening ... arXiv:hep-ph/9912371

Present SeaQuest Result

- Select where parton energy loss dominates ... $x_{Target} > 0.15, x_{Beam} > 0.6$
- With 5×10^{17} PoTs

(Preview plots are not archived)

• Systematic error \approx uncertainty of tracking efficiency

Angular Distribution (Boer-Mulders Effect?)

Lam-Tung Relation

• Drell-Yan angles in Collins-Soper frame

$$rac{1}{\sigma}rac{d\sigma}{d\Omega}=rac{3}{4\pi}rac{1}{\lambda+3}\left(1+\lambda\cos^2 heta+\mu\sin2 heta\cos\phi+rac{
u}{2}\sin^2 heta\cos2\phi
ight)$$

• Lam-Tung relation:

 $1 - \lambda = 2\nu$

- Spin-1/2 nature of quarks ... analogous to Callen-Gross relation in DIS
- No NLO corrections ($\mathcal{O}(\alpha_s)$)
- Small NNLO corrections ($\mathcal{O}(\alpha_s^2)$)

Measurements @ Fixed-Target Experiments

- With π beam
 - Lam-Tung relation violated!
 - Large ν
 - \circ Large h_1^\perp of q

- With <u>p</u> beam
 - Lam-Tung relation violated weakly?
 - Small ν
 - $\circ \,\, {
 m Small} \,\, h_1^\perp \, {
 m of} \, ar q$

Anticipated Result by SeaQuest

- SeaQuest measures the Drell-Yan angular distribution in p+p & p+d
 - $\nu = \text{size of } \cos(2\phi) \text{ modulation}$
 - $\circ~$ Probably small as past measurements indicate small $~h_1^\perp~$ of ar q
 - Better accuracy is anticipated

- Convolution of two Boer-Mulders functions: $u \propto \left[h_1^{\perp} \text{ of } \bar{q} \right] \times \left[h_1^{\perp} \text{ of } q \right]$
- Extraction of h[⊥]₁ from p+p & p+d Drell-Yan (E866)
 ... PRD 81, 034023 (2010), PRD 82, 114025 (2010)

Measurements @ Collider Experiments

• CDF (PRL 106, 241801) • CMS (PLB 750, 154)

 $^{\circ}~~p+ar{p}
ightarrow Z
ightarrow e^{+}+e^{-}$ @ $\sqrt{s}=2~{
m TeV}~^{\circ}~~p+p
ightarrow Z
ightarrow \mu^{+}+\mu^{-}$ @ 8 TeV

• No violation of Lam-Tang relation • Violation! Why different?

Calculations of Higher-Order Terms

- Without intrinsic k_T (i.e. Boer-Mulders effect)
- Terms
 - $^{\circ}$ LO: $q+\bar{q}\rightarrow\gamma$
 - $\circ \ \mathcal{O}(\alpha_s): \ q + \bar{q} \rightarrow \gamma + g \ \& \ q + g \rightarrow q + \gamma$
 - $\circ \ \mathcal{O}(\alpha_s^2): \ q + \bar{q} \to \gamma + g + g \text{ etc.}$

Studies

- $\circ~$ PRD 51, 4891 (1995) ... evaluation at $\mathcal{O}(\alpha_s^2)$ for CDF
- $\circ~$ PRD 76, 074006 (2007) ... evaluation at $\mathcal{O}(\alpha_s)$ with resummation
- $\circ~$ PLB 758, 384 (2016) ... evaluation at $\mathcal{O}(\alpha_s)$ & insight about $\mathcal{O}(\alpha_s^2)$
- $\circ~$ PRD 93, 114013 (2016) ... evaluation at $\mathcal{O}(\alpha_s^2)$ for NA10 thru CMS
 - $\circ\circ~$ No soft-gluon resummation ... little effect to angular coefficients
 - •• No higher-twist terms
- and quite more

Calculated Results — CMS & CDF

• CMS @ $|\eta| < 1.0$

- $\circ \ \mathcal{O}(lpha_s) ext{ term holds } 1 \lambda = 2
 u$
- $\mathcal{O}(\alpha_s^2)$ term does violate it!
- $^{\rm o}\,$ Well reproduced λ & ν measured
- $\circ~$ Well reproduced $\lambda \And \nu$ measured also
- \circ Smaller $\mathcal{O}(\alpha_s^2)$ term because of less g radiation in $q + \bar{q}$ than q + g

Calculated Results — E866

• E866 p + p ($E_p = 800$ GeV)

 $^\circ~{
m Calculation} \sim {
m measurement}$

• E866 p+d

- Calculation \neq measurement!
- $\circ~\lambda$ measured seems out of positivity limit (\leq 1)
- Calculation in E866 paper (PRL 102, 182001)
 - $\circ~~$ With soft-gluon resummation ($u = rac{2p_T^2}{2Q^2 + 3p_{\perp}^2}$)
 - As small as the measured p + d size. Because of resummation? Or kinematic bias in measurement?

Drell-Yan Process: Most Recent Results and Open Issues

Calculated Results — NA10 & E615

• NA10 ($E_{\pi} = 286 \text{ GeV}$)

• E615 ($E_{\pi} = 252 \text{ GeV}$)

- \circ Calculation \sim measurement
- $\circ \lambda$ measured too large

- $\circ \ \ Calculation \neq measurement!$
- \circ λ measured too large
- Overall: The higher-order calculation works fine (without the Boer-Mulders effect)
 - ° For *p* & π -induced D-Y together
 - $\circ~$ Change by ${\sim}50\%$ due to soft-gluon resummation?
 - Exceptions are E866 p + d &E615 $\pi + W$. Kinematic bias?

Summary

- The Drell-Yan process is a sharp tool to explore the nucleon structure
- $\bar{d}(x)/\bar{u}(x)$
 - $~\circ~$ SeaQuest found $\bar{d}(x)/\bar{u}(x)>1.$ Final result is awaited
 - Other quantities like $\Delta \bar{d}(x)$ vs $\Delta \bar{u}(x) \& L_{q,\bar{q}}$ can/should be examined together to understand the right mechanism of flavor asymmetry
 - New experiments are planned, which depend on the SeaQuest result
- Parton-enery loss in cold nuclear matter

 - Fundamental input to understand QGP at RHIC/LHC
- Angular distribution
 - The $\mathcal{O}(\alpha_s^{1,2})$ term was found large enough to reproduce the measurements (except E866 p + d, E615 $\pi + W$ and the resummation effect?)
 - $\circ~$ New results of COMPASS, RHIC, SeaQuest, etc. are valuable