A new kind of particle detector based on Resistive Plate Chamber structure is under development. Semi-Conductive electrodes with resistivity up to 109Om$^{-1}$cm are introduced to improve Rate Capability performance. The aim is to obtain a resolution hard detector with sub-nanosecond time resolution capable of working in high rate environment (order of MHz/cm2). In this presentation some results on two configurations under test are described. The first characterized by 1mm gas gap and both Si(Semis-Insulating)-Gallium Arsenide electrodes (~200μm), and the other characterized by 1.5mm gas gap, one Si-GaAs electrode and one intrinsic Silicon (~200μm) electrode. The DC Voltagemperametric characterization of a Si-GaAs sample measured applying metal electrodes on the substrate is also reported.

Increase in Rate Capability

An RPC detector can be described as a set of unit cells interconnected according to the diagram in Figure 1. A unit cell is characterized by the gas capacitance C_u, the electrodes capacitances C and by R_u and R resistances, which represent respectively the electrode resistance in the normal and longitudinal directions relative to electrode surface. R_u represent the resistance of the Graphite layer which distributes the high voltage V on the electrode surface. If the high voltage across the gas gap V_{gap} is enough, a ionizing particle crossing a unit cell triggers an avalanche multiplication process schematized as the closure of the switch. The resistance R_u assimilate the voltage across the gas gap proportionally to the current generated in the avalanche chamber. The resistance R_u can limit the transfer of energy from adjacent cells.

When a particles flux ϕ passes through the detector, the simultaneous ignition of many unit cells occurs, whose cumulative effect causes a voltage drop on the electrodes described by the relation

$$ V = V_{gap} = \frac{1}{2} \phi \eta \gamma $$

After the discharge process, the unit cell returns in the initial state with a time constant τ (order of microseconds) described by the relation

$$ \tau = \rho \epsilon (\epsilon + 2 \gamma) $$

In this phase the unit cell can be considered inefficient.

To prevent the detector does not lose efficiency as the flux increases, it is necessary to minimize the voltage drop on the electrodes and reduce the dead time τ.

For this purpose in this test was used the combination of two strategies:

- **Reduction of the average charge ϕ \Rightarrow using a high Signal to Noise ratio charge amplifier [2];**

- **Replacement of insulating electrodes (resistivity greater of 109Ω$^{-1}$cm and thickness of 1.8mm) with Semi-Insulating electrodes with resistivity lower of 106Ω$^{-1}$cm and thickness of 400μm.**

The Prototype1 is constituted by two Si-GaAs electrodes spaced by a PET circular crown 1mm thick. Both electrodes are 40μm thick and have a resistivity on the order of 109Ω$^{-1}$cm. The electrical contact with the high voltage electrode surface is formed through a layer of paint to Silver ions, while the one with the electrode connected to ground via a layer of Graphite. The gas gap is filled with a gas mixture consisting of: 99% N2/CO2, 0.5%. The signal is read on a pad placed under the low-voltage electrode. The detector is placed in series with a 100MΩ resistance in order to avoid that the power dissipated in the electrode, due to any shock related to edge defects, damage the crystal.

The prototype characterization was carried out at the Beam Test Facility of the National Laboratories of Frascati, using 450MeV electron beam. The average multiplicity of particles per bunch was fixed at 0.3 for the whole duration of the test. As trigger reference two silicon detectors optimized for time of flight measurements [3] whose time resolution was measured during the test resulting in [5] 180Kbps.

The Prototype2 is constituted by one Si-GaAs electrode (resistivity \leq 106Ω$^{-1}$cm) and one intrinsic Silicon electrode (resistivity \geq 106Ω$^{-1}$cm) spaced by a PET circular crown 1.5mm thick.

The electrical contacts with both electrodes is formed through a layer of Graphite. The positive high voltage is placed on the Si-GaAs electrode. The gas gap is filled with a gas mixture consisting of: Argon 40%/N2/CO2, 60%.

The signal is read on a pad placed under the low-voltage electrode. The detector is placed in series with a 100MΩ resistance in order to avoid that the power dissipated in the electrode, due to any shock related to edge defects, damage the crystal.

The prototype characterization was carried out at INFN Laboratories of University of Rome Tor Vergata exploiting atmospheric muons.

As trigger reference two scintillators have been used, whose time resolution was measured during the test resulting in (45±14)ps.

Metastable state in Si-GaAs

From the measurement of the DC voltagemperametric characteristic of a sample of Si-GaAs, carried out by depositing metal electrodes on the substrate, it is found that above a critical voltage V_{cur} the material switch to an high-conductivity state that persist along as the bias voltage is lowered to a shutdown value V_{cur} \leq V_{s}. To perform the measurement the sample is placed in series with a 1MΩ resistance, which in addition to protect the integrity of the power supply circuit, has the aim to smoothly transition to the high conductivity regime in order to observe the hysteresis loop [4][5].

- For values lower than V_{cur} increasing the voltage (Figure 1: black dotted line), the current follows the typical saturation law of Schottky devices.
- For voltage values higher than V_{cur} the transition to the high conductivity regime is observed and the sample shows a residual resistance of 490Ω.
- By reducing the voltage (Figure 2: red dotted line), the high-conductivity regime persists for an interval of about 100V lower than V_{cur}.

Conclusions

These results provide a solid foundation for the development of new prototypes. Efficiency vs Acceptance curves, as well as the time resolution, are consistent with what observed in a standard RPC detector. For an experimental confirm of the increase in terms of Rate Capability a test with a source of photons has been planned. Further investigation will be carried out on the properties of Si-GaAs and processes that occur at the gas-semiconductor interface.

References

(3) B. Liberti, R. Cardarelli, A. Caltabiano, S. Bruno, A. Di Ciaccio, B. Liberti, L. Pizzimento (Università e INFN Roma Tor Vergata)
(4) F. Lucchini, High voltage field current transport in semi-insulating GaAs and InP, University of Hong Kong, 2000.
(5) F. Lucchini, Optical and electrical characterization of metal/pell-insulating GaAs contacts, University of Hong Kong, 2000.