

W and Z boson recision measurements at ATLAS

Camilla Vittori

Università di Bologna and INFN

XVI Incontri di Fisica delle Alte Energie 19-21 Aprile 2017, Trieste Outline

W and Z production @ 13 TeV
 Phys. Lett. B 759 (2016) 601

tt/Z @ 7, 8 and 13 TeV
• JHEP 02 (2017) 117

*Z+jets @ 13 TeV · arXiv:1702.05725

*W mass @ 7 TeV • arXiv:1701.07240

*https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

19-4-2016

W and Z precision measurements

W and Z vector are candles to test SM:

- clear signature, large statistics and small background
- In the second second
 - → predictions available at NNLO accuracy in QCD + NLO EW corrections
- ♦ Sensitive to the dynamics of interacting partons → constraint on PDFs
- \diamond Powerful tool for \rightarrow detector calibration and alignment
 - → luminosity monitoring

✤ W+/W⁻, W/Z and tt/Z Ratios

cancellation of some uncertainties (lumi+lepton-related+theoretical)

- \triangleleft Sensitivite to \rightarrow R_{W+/W-} to u,d-valence quarks at low Bjorken-x
 - \rightarrow R_{W±/Z} to s-quark distribution
 - \rightarrow R_{tt/Z} at a given \sqrt{s} to gluon-to-quark PDF

* Z+jets

19-4-2016

- \triangleleft dominated by strong interactions \rightarrow pQCD studies
- I background for SM, Higgs and new Physics

W and Z cross sections 13 TeV, 81 pb⁻¹

Simultaneous combination of W⁺, W⁻ and Z fiducial cross sections

Z ~ 1% (± 2.1% lumi) W ~ 2% (± 2.1% lumi)

Theoretical predictions uncertainty (dominated by PDFs): ~6% for W[±] and ~7% for Z.

W and Z cross sections · Ratios

Phys. Lett. B 759 (2016) 601

High precision measurement (~0.8%) → discriminate among various PDFs

W+/W- favours CT14nnlo and MMHT14nnlo PDFs

W±/Z compatible with all PDFs within uncertainties

ATLAS-epWZ12 is the most predictive calculation available and it contains fits on ATLAS data.

5

tt/Z cross section ratios 7,8 and 13 TeV

Differential Z+jets cross section 13 TeV, 3.2 fb⁻¹

arXiv:1702.05725

at particle level as a function of jet kinematic variables → comparison with NLO (BLACKHAT+SHERPA) and

NNLO (Z+≥1jet Njetti) predictions

spectrum (p_T^{jet}>200 GeV)

W mass · Motivations

7 TeV, 4.6 fb⁻¹

✤ W mass:

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_\mu} (1 + \Delta r)$$

in SM, Δr reflects NLO corrections and depends on mt² and In(m_H)

arXiv:1701.07240

✓ the relation between m_W, m_t and m_H provides consistency test of SM
 ✓ probe for BSM → Δr contains contributions from additional particles and interactions
 ✓ in the global fit contest, constraints on new physics limited by W mass precision

W mass · Experimental Strategy

Important components: charged lepton and recoil to reconstruct p^ν

mz measurements in Z-boson samples

✓ provide experimental (lepton and recoil calibrations) and theoretical constraints from comparison with LEP.

 \triangleleft additional systematics for $Z \rightarrow W$ extrapolation

✤ <u>m_w from fits on p_T^I and m_T^W</u> for different values of m_w

 $\triangleleft \chi^2$ minimisation gives the best fit template

predictions for m_w reweighing m_w
 according to the Breit-Wigner

→ m_w blinded in [-100,100] MeV
 ✓ measurement in 28 categories

m_W = 80370 ± 7(stat.) ± 11(syst.) ± 14(mod.) MeV = 80370 ± 19 MeV

Combined	Value	Stat.	Muon	Elec.	Recoil	Bkg.	QCD	EWK	PDF	Total
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
m⊤, p⊤ ^I , W±, e-μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5

The uncertainty is dominated by theoretical modelling

CMS Results

Z+jets differential cross sections

Good agreement with NNLO simulations.

W and Z cross section ratios

Agreement with NNLO predictions. Experimental precision comparable with theoretical uncertainties.

Z mass measurement in "W-like"

m_z extracted through the W-like method and compatible with the world-average value.

Conclusions

W and Z cross sections at the % level in agreement with NNLO calculations

W+/W-, W/Z and tt/Z ratios benefit from the cancellation of several experimental and theoretical uncertainties

comparable with NNLO predictions

 \triangleleft W+/W⁻ precision ~0.8% \rightarrow discriminate among PDFs

Z+jets differential cross sections at particle level for high jet multiplicity
 agreement with calculations at NNLO and NLO
 some deviations for LO calculations at p_T^{jet}>200 GeV
 Z+bb@13 TeV measurement on going

First W mass measurements @7 TeV with ATLAS

- uncertainty dominated by theoretical modelling (PDFs and QCD)
 - → future benefit in PDF uncertainty including most recent W/Z measurements

 $m_W = (80370 \pm 19) \text{ MeV}$

General agreement between ATLAS and CMS
 The W mass measurement in CMS is ongoing

 \triangleleft Interesting W-like measurement of the Z mass, in agreement with world average.

Poster di

Elisabetta MANCA

W and Z cross sections 13 TeV, 81 pb⁻¹

Camilla Vittori

tt/Z cross section ratios 7,8 and 13 TeV

Dependence of σ on \sqrt{s} JHEP 02 (2017) 117 Single ratio $R_{tt/z}$ at $\sqrt{s} = 13$ TeV Single ratio R_{Z(13 TeV)}/Z(8 TeV) Good agreement with ATLAS ATLAS 8 TeV, 20.2 fb⁻¹ 13 TeV, 3.2 fb⁻¹ different PDFs 13 TeV, 3.2 fb⁻¹ data ± total uncertainty data ± total uncertainty data ± stat. ± exp. uncertainty data ± stat. ± exp. uncertainty Measurements more data ± stat. uncertainty data ± stat. uncertainty ABM12 **ABM12** precise than predictions CT14 CT14 NNPDF3.0 NNPDF3.0 MMHT14 MMHT14 ATLAS-epWZ12 ATLAS-epWZ12 \Box HERAPDF2.0 HERAPDF2.0 \Box (NNLO QCD, inner uncert.: PDF only) (NNLO QCD, inner uncert.: PDF only) 1.5 1.6 1.7 1.8 0.7 0.8 1.2 0.9 1.2 0.9 1.3 1.1 1.4 $\sigma_{t\bar{t}(13TeV)}^{tot}$ / $\sigma_{Z(13TeV)}^{fid}$ $\sigma_{Z(13TeV)}^{fid}$ / $\sigma_{Z(8TeV)}^{fid}$

Light quark sea distributions

Z+jets cross section 13 TeV, 3.2 fb⁻¹

Differential measurements in several jet distributions compared to various simulations

very sensitive probe of different MC approaches, tuning

Good agreement with calculation at NNLO (Z+≥1jet Njetti) or NLO (BLACKHAT+SHERPA,

MG5_aMC+PY8 FxFx), while LO ME MG5_aMC+PY8 CKKWL models a too hard jet spectrum

Some deviations for large jet pt (>200 GeV)

 HT is the sum of inclusive pT of final state objects BLACKHAT (fixed order NLO ME) underestimates the cross section measurements due to the missing contributions from event with higher parton multiplicity.

★ Template fit approach: compute the p_T^1 and m_T distributions for different assumed values of $m_W \rightarrow \chi^2$ minimisation gives the best fit template

m_T has a Jacobian edge at m_W

18

W mass · Muon Calibration

$ \eta_{\ell} $ range	[0.0, 0.8]		[0.8, 1.4]		[1.4, 2.0]		[2.0, 2.4]		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
δm_W [MeV]										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and										
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7

W mass · Electron Calibration

arXiv:1701.07240

Exclude bin 1.2<letal<1.82 as the amount of passive material and its uncertainty are largest

$ \eta_{\ell} $ range	[0.0, 0.6]		[0.6, 1.2]		[1.82, 2.4]		Combined	
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_T^ℓ	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
δm_W [MeV]								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3

W mass · Recoil Reconstruction and Calibration

arXiv:1701.07240

- Vector sum of the moment of all clusters measured in the calorimeters
- Calibrate the scale (resolution) of the recoil using ull $(u\perp)$
- from Z events

21