Very-high-energy gamma-rays and neutrinos: the search for PeVatrons

Silvia Celli Gran Sasso Science Institute silvia.celli@gssi.infn.it

20/04/2017

TRIESTE - IFAE 2017

How much do we know about CRs?

The SNR paradigm for the origin of CRs

3

The SNR paradigm for the origin of CRs

The multi-messenger search for PeVatrons

<u>Observational</u> <u>signature</u> γ -ray and/or v emission extending unattenuated in the multi-TeV domain: $E_P=1~PeV$ -> $E_\gamma=100~TeV$ and $E_v=50~TeV$

Under operation neutrino telescopes

Module (DOM)

5,160 DOMs deployed in the ice 2450 m

ANTARES completed since 2008 http://antares.in2p3.fr

Under construction KM3NeT few Km³ http://www.km3net.org

IceCube completed since 2010 1 Km³ https://icecube.wisc.edu

How do we detect neutrinos

pulses → direction/energy reconstruction

Neutrino event topology

Isolated neutrinos interacting in the detector

Calorimetry + all flavors

Up-going muon tracks

Astronomy: angular resolution

Neutrino event topology

Isolated neutrinos interacting in the detector

Up-going muon tracks

Adrian-Martinez et al. [KM3NeT Coll.], J. Phys. G: Nucl. Part. Phys. 43 (2016)

A complementary view of the sky Visibility

(galactic coordinates)

The IceCube signal

4 years of HESE (all flavors): sources not yet identified

Compatible with isotropy Moderate excess from the Southern Sky (not yet at 3o level): Fermi Bubbles? Galactic Ridge?

A proton PeVatron in the Galactic Center?

The effect of radiation fields

The observed γ-ray spectrum is not the same as the emitted one: absorption from radiation fields has to be taken into account in the propagation from the source to the Earth.

Celli, Palladino and Vissani, Eur. Phys. J. C (2017) **77**: 66

The effect of radiation fields

The observed γ-ray spectrum is not the same as the emitted one: absorption from radiation fields has to be taken into account in the propagation from the source to the Earth.

The effect of radiation fields

The observed γ-ray spectrum is not the same as the emitted one: absorption from radiation fields has to be taken into account in the propagation from the source to the Earth.

Muon neutrino fluxes from the GC

Villante and Vissani, Phys. Rev. D78 (2008)103007

pp interaction with target gas (CMZ)

Muon neutrino fluxes from the GC

Villante and Vissani, Phys. Rev. D78 (2008)103007

Event rates in neutrino telescopes

 $\delta_{GC} = -29.01^{\circ}$

IceCube: PS, $-30^{\circ} < \delta < 0^{\circ}$ ANTARES: PS, $-45^{\circ} < \delta < 0^{\circ}$ ARCA: PS, 2 building blocks

	ANTARES	ARCA	IceCube
	(evts/year)	(evts/year)	(evts/year)
PS E _γ =10.7 TeV	0,006	1,1	0,05
PS* E _ν =100 TeV	0,02	2,1	0,15
D NO CUTOFF	0,01	1,4	0,13
DC E _v =600 TeV	0,01	1,3	0,10

Conclusions

- Acceleration mechanisms at the source (as well as the origin of cosmic rays) are still poorly understood;
- A multi-messenger approach is fundamental to disentangle leptonic from hadronic processes;
- The search for PeVatrons is a key science project in both gamma-ray and neutrino communities: the investigation of galactic source emissions makes the case for a gamma-ray Southern observatory and a Northern neutrino telescope;
- Neutrino astronomy is a promising field (we might see a different sky from the gamma one), but several data-taking years are necessary in a cubic kilometer detector to detect point-like sources.

Current Galactic VHE sources (with distance estimates)

BACKUP SLIDES

The SNR paradigm for the origin of CRs

$$U_{CR} = 0.5 \,\text{eV/cm}^3$$
$$V = 400 \,\text{kpc}^3$$
$$\tau_{res} = 5 \times 10^6 \,\text{years}$$
$$P_{CR} \simeq \frac{U_{CR}V}{\tau_{res}} \simeq 10^{40} \,\text{erg/s}$$

$$\begin{split} E_{SN} &= 10^{51} \mathrm{erg} \\ R_{SN} &= 0.03 \, \mathrm{year}^{-1} \\ P_{SN} &= R_{SN} E_{SN} \simeq 10^{41} \, \mathrm{erg/s} \\ &\longrightarrow \xi = 10\% \end{split}$$

A variety of SNRs observed until now

Gamma rays

The Fermi LAT sky...

The Fermi LAT sky...

+	SNRs and PWNe	Ŕ	BL Lacs		Unc. Blazars	Δ	Others	0	Extended
×	Pulsars	\diamond	FSRQs	*	Other AGNs	∇	Unassociated		

Known radiation fields

Rad. field	T_i	ξ_i	L_i	$n_{\gamma,i}$	E_i	
	(eV)		(kpc)	(cm^{-3})	(TeV)	
CMB	$2.35\cdot 10^{-4}$	1	8.3	410.7	1111	
IR	$3.10 \cdot 10^{-3}$	$1.55 \cdot 10^{-4}$	4.1	146.0	84.23	
SL	$3.44 \cdot 10^{-1}$	$1.47 \cdot 10^{-11}$	2.4	19.0	0.26	
Porter, Moskalenko, Strong, Orlando and Bouchet, Astrophys. J. 682 (2008) 400						

and unknown

The absorption observed in the PS emission at the GC position might be due to a radiation field with $T=1.3x10^{-2} \text{ eV}$ $\xi=1, L=0.07 \text{ pc}, n=7x10^7 \text{ cm}^{-3}$ $\xi=0.02, L=3.5 \text{ pc}, n=1.4x10^6 \text{ cm}^{-3}$

Absorption and scattering: water vs ice

	acqua marina (Mar Mediterraneo)	acqua (Lago di Baikal)	ghiaccio (Polo Sud)
	$\lambda = 473(375) nm$	$\lambda = 480 nm$	$\lambda = 400 nm$
λ_a	$60 \pm 10(26 \pm 3) m$	20-24m	110m
λ_s^{eff}	$270 \pm 30 (120 \pm 10)m$	200 - 400 m	20m

Tabella 3.2. Parametri della propagazione della luce in acqua e ghiaccio.

 ${}^{40}\mathrm{K} \rightarrow {}^{40}\mathrm{Ca} + e^- + \bar{\nu}_e$

e

$${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar} + \nu_e + \gamma.$$

Gli elettroni prodotti nel primo processo, spesso, hanno energia sufficientemente elevata da indurre l'effetto Cherenkov, mentre nel processo di cattura dell'elettrone, il fotone nello stato finale viene prodotto con un'energia ($E_{\gamma} = 1.46 M eV$) che può facilmente portare alla produzione di elettroni con energie sopra la soglia di emissione di luce Cherenkov.

The IceCube signal

Slight tension among different analyses $\gamma_{astro}=[2:2.5]$

Current IC upper limit

A point-source in the IC HS?

- Accumulation of IC events near the GC
- No PS claimed by IC
- If due to a PS, it would have a flux φ(E)=6x10⁻⁸ GeV cm⁻² s⁻¹ and would be located in (α,δ)=(-79°,-23°)

ANTARES full sky search algorithm in a region of 20° around the proposed location

NO SIGNIFICANT CLUSTERING BUT UPPER LIMITS EXCLUDE THE PRESENCE OF A PS

Adrian Martinez *et al.* [ANTARES Coll.], The Astrophysical Journal Letters, 786:L5, 2014

33

ANTARES multi-messenger searches

- Better understanding of the source physics
- Improvement in the detector sensitivity (uncorrelated bkg)