

Impact on time-integrated CPV measurements

Current results from Belle for: $A_{CP} = \frac{\Gamma(D^0 \to X) - \Gamma(\overline{D}^0 \to \overline{X})}{\Gamma(D^0 \to X) + \Gamma(\overline{D}^0 \to \overline{X})}$ Only correlations and sum rules between *AcP* for different final states

between ACP for different final states can be predicted precisely (absolute values of ACP have large uncertainties)

Colden channels at Dolla II.

Channel	Current measurement		Scaled	
	$\mathcal{L}(\mathrm{fb}^{-1})$	value $(\%)$	50 ab^{-1}	
$D^0 \to K^+ K^-$	976	$-0.32\pm 0.21\pm 0.09$	± 0.03	
$D^0 o \pi^+ \pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.05	
$D^0 o \pi^0 \pi^0$	966	$-0.03\pm 0.64\pm 0.10$	± 0.09	
$D^0 o K^0_S \pi^0$	966	$-0.21\pm 0.16\pm 0.07$	± 0.03	
$D^0 o K^{\overline{0}}_S \eta$	791	$+0.54\pm 0.51\pm 0.16$	± 0.07	
$D^0 o K^{\overline{0}}_S \eta'$	791	$+0.98\pm 0.67\pm 0.14$	± 0.09	
$D^0 o K^{ ilde 0}_S K^0_S$	921	$-0.02 \pm 1.53 \pm 0.17$	± 0.02	
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	± 0.13	
$D^0 \to K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40	
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33	
$D^0 o ho^0 \gamma$	976	$+0.056\pm 0.152\pm 0.006$	± 0.02	
$D^0 o \phi \gamma$	976	$-0.094\pm 0.066\pm 0.001$	± 0.01	
$D^0 \to \overline{K}^{*0} \gamma$	976	$-0.003\pm 0.020\pm 0.000$	± 0.003	
$D^+ o \pi^0 \pi^+$	(ongoing analysis	± 0.04	
$D^+ \to \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04	
$D^+ \to \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	
$D^+ o \eta' \pi^+$	791	$-0.12\pm 1.12\pm 0.17$	± 0.14	
$D^+ \to K^0_S \pi^+$	977	$-0.36\ \pm 0.09\ \pm 0.07$	± 0.03	
$D^+ \to K_S^{\widetilde{0}} K^+$	977	$-0.25\pm 0.28\pm 0.14$	± 0.05	
$D_s^+ \to K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29	
$D_s^+ \to K_S^{\widetilde{0}} K^+$	673	$+0.12\pm 0.36\pm 0.22$	± 0.05	
$\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2)} \cdot (\mathcal{L}_{\text{Belle}} / 50 \text{ ab}^{-1}) + \sigma_{\text{irred}}^2}$				

Impact on $D^0-\overline{D}^0$ mixing and CPV

Flavour tagging: the ROE method

A new method: selecting events with only 1 K^{\pm} in the ROE to tag the flavour of D⁰ at production

Expected perfomances: $\epsilon \sim 27\% \quad \omega \sim 13\%$ $Q^0 = \epsilon \cdot (1 - 2\omega)^2 \sim 20\%$

Golden channe	$D^+ \rightarrow \eta \pi^+$ $D^+ \rightarrow \pi' \pi^+$	
$D^0 \rightarrow K_S K_S$	$D^+ o n^0 n^+$	$D^+ \rightarrow \eta \pi^+$ $D^+ \rightarrow K^0_S \pi^+$ $D^+ \rightarrow K^0_S K^+$
(CPV is enhanced in the	(No CPV in the SM:	$\begin{array}{c} D_s^+ \to K_S^0 \pi^+ \\ D_s^+ \to K_S^0 K^+ \end{array}$
SM predictions; limited by	possible enhancement	
statistics at Belle)	from NP)	$\sigma_{ m Belle~II}=\sqrt{6}$

Leptonic and semileptonic decays

Leptonic decays $(D_{(s)^+} \rightarrow \mu^+ \nu)$ Extracting $f_{D_q}|V_{cq}|^2$, the goals are: - improve the most precise measurement of $|V_{cs}|$ (from Belle) - measure $|V_{cd}|$ with 2% of precision

Possibility to search for $D^0 \rightarrow invisibles$

To study the (semi)leptonic decays, we look for configurations with **missing energy from the neutrino**: $P_{\rm miss} = \sqrt{s} - P_{\rm tag} - P_{\rm frag} - P_l (-P_h)$ $M_{\rm miss}^2$ peaks at 0 for the signal

(different selection criteria \rightarrow different performances) Performances for D^{*+} tag: $Q^* = 0.8 \cdot (1 - 2 \cdot 0.02)^2 \sim 80\%$ but only 25% of D⁰ are from D^{*+}

A fraction of D⁰ can be doubly tagged: measurement of Q⁰ (ϵ , ω) on data

15% reduction on statistical uncertainty of $A_{CP}(D^0 \rightarrow K^- \Pi^+)$ combining the D*+ and ROE methods: $\frac{\sigma^c_{A_{CP}}}{\sigma^*_{A_{CP}}} = \frac{\alpha}{\sqrt{1+\alpha^2}}$; $\alpha \equiv \sqrt{\frac{1}{3} \cdot \frac{Q^*}{Q^0} \cdot \frac{\rho^*_{\text{reco}}}{\rho^0_{\text{reco}}}}$

(where ρ^{o} is the purity of the reconstructed D⁰ tagged with the ROE method and ρ^{*} is the purity with the D^{*+} tag)

Enhancement of the effective luminosity by **35%** adding the ROE method

References

Belle II Theory Interface Platform (B2TiP) Report

(to be published on Progress of Theoretical and Experimental Physics)

